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Abstract 

 

This paper presents a model for analysing the effects of mergers in industries with 
price competition, capacity-enhancing investments, and in the presence of 
congested capacitated networks. It advances beyond traditional models with cost-
reducing or quality-enhancing investments by integrating a capacity-sharing 
approach into a representative consumer framework. The paper compares the 
quality and capacity investments models in terms of pricing, investment intensities, 
and merger effects, and discusses how to calibrate the capacity model with real-
world data to quantify merger effects.  

 

1. Introduction 

This paper introduces a model of price and capacity investment competition that can be 

calibrated to quantify the effects of mergers on prices, quantities, investment, congestion, 

consumer surplus, and overall welfare. Despite the intense debate among practitioners and 

competition authorities, there is limited research on the impact of horizontal mergers in 

scenarios where firms compete by setting prices and investment levels (Motta and 

Tarantino, 2021). This gap is particularly relevant in industries like telecommunications, 

where recent years have seen a severe increase in traffic volume, necessitating substantial 

investment in infrastructure and network capacity by operators. 

  The few existing papers that explore horizontal mergers in the presence of price and 

investment competition (e.g., Federico et al., 2018; Motta and Tarantino, 2021; Bourreau, 

Jullien, and Lefouili, 2021) typically model investments as either impacting marginal cost 

(cost-reducing investments or process innovation) or shifting the demand function (quality-

enhancing investments or product innovation). As discussed below, such models may not 

capture some key characteristics of industries such as telecommunications where network 
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capacity is crucial to maintaining service quality. Congested capacitated models (or 

capacity models for short) are particularly suitable for these industries. These models 

generally apply to communication networks, including transportation and electricity 

industries, and have proven especially useful in industrial organization for examining the 

effects of net neutrality regulation (see, for instance, Choi and Kim, 2010; Bourreau, 

Kourandi, and Valletti, 2015) in environments where network traffic can lead to congestion, 

affecting both content providers and end-users. These papers explore the impact of net 

neutrality regulation on capacity investments in the internet access market and on content 

market innovation. Additionally, capacity models are key to understanding potential 

inefficiencies arising in the expansion of modern communication networks (Acemoglu, 

Bimpikis, and Ozdaglar, 2009). Congestion effects under capacity constraints have also 

been explored in oligopolistic competition models in general frameworks and applied to the 

telecommunications and transport sectors (Xiao, Yang and Han, 2007; Acemoglu, Bimpikis, 

and Ozdaglar, 2009), and on other topics such as market entry (Johari, Weintraub, and Van 

Roy, 2010). 

  This paper sets out to achieve two primary objectives: firstly, to compare the capacity 

model with a standard model of quality-enhancing investments (or ‘quality model’ for 

short). This comparison aims to deepen our understanding of the distinctions between the 

two models in terms of pricing, investment intensity and merger effects. Secondly, we aim 

to develop a straightforward methodology for calibrating the model for practical 

application, particularly in telecommunications markets where capacity constraints, traffic 

congestion, and investments play a crucial role. This calibrated model will enable 

practitioners and competition authorities to quantify the effects of a horizontal merger 

between two firms in the presence of congestion costs, while considering any efficiencies. 

  In a capacity model, the cost of traffic congestion experienced by users can be quantified 

in monetary terms by calculating the average level of delay or waiting time for given traffic 

flows and network capacity, and then determining its cost to the user.  In this paper, we show 

how incorporating the capacity-sharing model into a representative consumer model yields 

inverse demand functions that are linear in quantities. Motta and Tarantino (2021) show that 

known effects of a merger with cost-reducing investments extend to models with demand-

enhancing investments under two specific types of demand, making the demand-

enhancing investment isomorphic to cost-reducing investment. Specifically, this occurs in 

quality-adjusted models and models showing a hedonic price transformation. Neither of 

these cases seems feasible in the capacity-sharing model, wherein the level of investment 
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interacts with output within the inverse demand function by appearing in the denominator 

of the slope. This formulation justifies a fresh analysis of merger effects in this type of 

model. 

  In the capacity-sharing model investments rotate the inverse demand function (i.e. 

consumers’ willingness to pay does not increase at the origin), unlike in popular models 

with quality-enhancing investments where investments typically shift the inverse demand 

function outwards. We discuss how this distinction positions the capacity-sharing model 

as an adequate representation of industries facing capacity constraints and congestion 

issues. Our examination of investment and price competition uncovers notable differences 

between the two models. While in the quality model, the firm’s increase prices in response 

to industry-wide investment increases, in the capacity model, firms reduce their prices in 

response. This pricing strategy is partially driven by the firm’s increased ability to capture 

new demand when lowering its prices, compared to before increasing its investment. 

Investment intensity. Although the model does not yield explicit solutions, our numerical 

analysis reveals that with increasing product substitutability and thus fiercer price 

competition, both models exhibit a decline in profits. However, the investment strategies 

and intensity diverge significantly in the presence or absence of capacity constraints. In the 

quality model, investment intensity (defined as investment cost over total revenue) is highly 

variable and can surge to 100% of revenues when products are closely substitutable, and 

investment has a substantial impact on consumer utility. This contrasts with the capacity-

sharing model, when investments significantly reduce congestion costs, investment 

intensity remains consistently high across various degrees of product substitutability, and, 

moreover, never reaches the peaks observed in the quality model – in our examples, it never 

exceeds 50% of revenues.2 This contrast is due to the shape of investments in the two 

models: in the quality model investment is U-shaped with respect to the degree of product 

substitutability, whereas in the capacity model investment decreases monotonically. 

 Efficiency analysis. We also explore how efficiency gains in investments, similar to those 

from a merger, affect investments and prices in both models. In the quality model, a 50% 

 
2 The investment intensity (capital expenditure over total revenue) for telecom companies often 
reaches around 20 − 25% (Moss Adams, 2022, ‘2022 Telecommunications Benchmarking Study’). 
The average investment intensity of EU-15 countries from 2005 to 2007 (as a percentage of value 
added) is measured at 22.3% for telecommunications sector. Other industries with high investment 
intensity include energy (37.8%), water, waste (42.6%), air transport (42.1%), and warehousing 
(42.2%), with water transport being the only sector above 50% (56.3%) (European Commission, 
2022, ‘Science, Research and Innovation Performance of the EU 2022 – Building a Sustainable Future 
in Uncertain Times’, Table 9-1, p. 612). 



4 
 

improvement in investment cost efficiency significantly boosts investment by over 100%, 

raising equilibrium prices. However, despite this price increase, consumers benefit from the 

higher levels of investment via an improvement in quality, leading to a significant expansion 

in demand. The capacity-sharing model shows a 30% increase in investment, with prices 

decreasing as investment levels rise. As a result, consumers also benefit from lower prices 

and lower congestion, which also leads to an increase in demand. 

Merger without efficiencies. Absent synergies, the quality model indicates that mergers 

lead to substantial increases in investment for the non-merging firms, especially in 

scenarios of high investment intensity. In contrast, the merging firms notably reduce their 

investment. Post-merger, all firms set higher prices. With low investment intensity, the 

merging firms exhibit more substantial price increases than the non-merging firms, but this 

pattern reverses in environments of high investment intensity when products are 

moderately to highly substitutable. The capacity-sharing model, however, predicts a more 

moderated response in investments. Non-merging firms moderately increase their 

investment levels, while merging firms typically reduce theirs. Unlike in the quality model, 

the price increases for merging firms exceed those of non-merging firms irrespective of the 

level of investment intensity. Despite these differences, the overall impact on consumer 

surplus remains relatively close across both models, though in most cases it is slightly 

weaker in the capacity model. The difference becomes more apparent in scenarios of 

moderate to high product differentiation combined with high investment intensity, where 

the reduction in consumer surplus in the capacity model is half as much as that observed 

in the quality model. 

Merger with efficiencies. When synergies that reduce investment costs come into play, 

thereby elevating investment levels, merger effects are more pronounced in the quality 

model, resulting in notable rises in both prices and investments. We observe a consistent 

increase in total surplus in both models in the presence of high investment intensity. The 

quality model also predicts an increase in consumer surplus, whereas the capacity model 

predicts an increase in consumer surplus for moderately to highly differentiated products. 

This suggests that merger efficiencies, like reduced investment costs, provide greater 

consumer benefits in markets characterised by differentiated products and high investment 

intensity. 

Model calibration. In Section 6 we adopt a specific investment cost function and then 

explain in detail how to calibrate the different model parameters. We present different 
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strategies to overcome data limitations and proceed with model calibration in cases where 

there is no unique way to calibrate parameters, or the analyst lacks the necessary 

information due to data accessibility issues. 

  The paper is structured as follows. Section 2 presents the capacity-sharing model, where 

firms engage in competition via pricing and capacity-expanding investments. Section 3 

conducts a comparative analysis of the two models, discusses their economic 

interpretations, and analyses pricing decisions and investment intensity. Section 4 offers a 

thorough examination of a symmetric duopoly and compares the simulation results of 

pricing and investment decisions between the two models. Section 5 describes the merger 

effects in the capacity-sharing model, presents various efficiencies typically generated by 

mergers, and explains how to incorporate them into the model in a tractable manner. 

Furthermore, this section conducts simulations to compare the effects of mergers across 

the two models. Section 6 provides a step-by-step guide on how to calibrate the model. 

Finally, Section 7 concludes the paper. 

2. A Model of Capacity and Price Competition 

We consider an industry with 𝑛𝑛 ≥ 2 firms, where each firm 𝑖𝑖 = 1, … ,𝑛𝑛 produces a 

differentiated good or service and operates at a constant, possibly different, marginal cost 

of 𝑐𝑐𝑖𝑖 ≥ 0.  

  We account for congestion effects: the benefits consumers derive from purchasing from 

or subscribing to a specific firm are diminished by a negative externality that increases 

monotonically with the total volume of consumption that the firm serves. Each firm 𝑖𝑖 can 

invest 𝑢𝑢𝑖𝑖  to expand its network capacity (infrastructure, network deployment, number of 

sites or facilities…) and mitigate these congestion effects. Thus, firms compete in prices 

and investment levels, with each firm 𝑖𝑖 simultaneously setting its price 𝑝𝑝𝑖𝑖  and capacity-

expanding investment level 𝑢𝑢𝑖𝑖. 

Investment costs. The cost of investing 𝑢𝑢𝑖𝑖  is given by the investment cost function: Γ𝑖𝑖(𝑢𝑢𝑖𝑖), 

which satisfies Γ𝑖𝑖(0) = 0, Γ𝑖𝑖′ > 0, and Γ𝑖𝑖′′ ≥ 0. Allowing for Γ′′ > 0 is motivated by both 

technical and economic considerations. 
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  From a technical standpoint, increasing the convexity of the function ensures that the 

optimization problem faced by firms is well-behaved, enhancing the likelihood that the 

profit function will satisfy second-order conditions.3  

  From an economic perspective, there are compelling reasons to justify a strictly convex 

investment cost function. As a firm’s total investment increases, the cost of investing may 

rise progressively. For instance, when a firm increases its capital expenditure (CAPEX) by 

investing in new equipment, machinery, or facilities, captured here by 𝑢𝑢𝑖𝑖, this may 

additionally result in higher operating expenditures (OPEX) due to ongoing operational costs 

such as maintenance, utilities, personnel, or insurance. The function Γ𝑖𝑖(𝑢𝑢𝑖𝑖) accounts for 

the full cost of investing in and maintaining the network. Additionally, the cost of capital and 

financial needs might grow more than proportionally as investment scales up. 4 These 

situations imply that the rate of growth of the investment cost function is strictly increasing: 

Γ𝑖𝑖′′ > 0.5  

  Additionally, assuming Γ𝑖𝑖′′ > 0 may be necessary when 𝑢𝑢𝑖𝑖  serves as a proxy variable, which 

can be useful in quantitative analyses. For example, in the telecommunications industry 𝑢𝑢𝑖𝑖 

might represent the number of operational sites of firm 𝑖𝑖, the bandwidth capacity available 

to its customers, the rollout of new technologies such as 5G networks, or some quantitative 

measure or indicator of the extent to which a firm has expanded or improved its network 

infrastructure, such as network coverage, capacity of existing facilities or technologies to 

enhance service quality and data speeds. 

Congestion costs. The congestion cost is typically measured in currency equivalent 

terms.6 As a result, the consumer’s utility of buying from or subscribing to firm 𝑖𝑖 depends on 

 
3 When the parameter 𝑡𝑡𝑖𝑖, to be introduced later in this paper, is low, congestion costs become highly 
sensitive to investment. This sensitivity can potentially lead to the non-existence of equilibrium when 
𝑡𝑡𝑖𝑖 is sufficiently low and Γ𝑖𝑖 = 𝑢𝑢𝑖𝑖. However, increasing the convexity of the investment cost function, 
such as by adopting a quadratic form 𝑢𝑢𝑖𝑖2/2, may ensure the concavity of the profit function and the 
existence of an equilibrium. For this reason, we assume this functional form in our analysis of 
duopolistic competition. 
4 Similarly, labour, management, and departmental size, among other factors, face capacity 
constraints. As these limits are approached, costs increase sharply due to the need for expansion. 
5 Recent papers that make the same assumption include Motta and Tarantino (2021) and López and 
Vives (2019), with the latter interpreting the investment variable as spending on R&D. Athey and 
Schmutzler (2001) analyse a general model of oligopolistic competition with investment, which 
encompasses as special cases many well-known models of competition and investments. They 
introduce a general investment cost function and require sufficient convexity in this function to 
ensure the uniqueness of the equilibrium across the various models (Lemma 2, p. 7). 
6 See for example Acemoglu and Ozdaglar (2007); Hayrapetyan, Tardos and Wexler (2007); Johari, 
Weintraub, and Van Roy (2010); Perakis and Sun (2014); Ozdaglar (2008); Xiao, Yang and Han (2007). 
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the full price of firm 𝑖𝑖, which is the sum of the price (𝑝𝑝𝑖𝑖) and the congestion cost the 

consumer experiences per unit of consumption, denoted by 𝑙𝑙𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖): 

   𝑝𝑝𝑖𝑖 + 𝑙𝑙𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖), (1) 

where 𝑞𝑞𝑖𝑖  is the quantity supplied by firm 𝑖𝑖. The congestion cost per unit of consumption of 

firm 𝑖𝑖 is increasing in its quantity and decreasing in its investment level: 𝜕𝜕𝑙𝑙𝑖𝑖/𝜕𝜕𝑞𝑞𝑖𝑖 ≥ 0 and 

𝜕𝜕𝑙𝑙𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 ≤ 0.  

  The total congestion cost experienced by consumers of firm 𝑖𝑖 is: 

𝐿𝐿𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖) = 𝑙𝑙𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖)𝑞𝑞𝑖𝑖 .  (2) 

  To model Bertrand pricing with differentiated products, we consider a demand system 

obtained from a representative consumer with a taste for variety and quasilinear utility.7 

More specifically, we consider the Singh-Vives subutility function (Singh and Vives, 1984), 

but extended it to include congestion costs8: 

 
𝑈𝑈 = �𝑎𝑎𝑖𝑖𝑞𝑞𝑖𝑖 −

1
2
���̂�𝛽𝑖𝑖𝑞𝑞𝑖𝑖

2 + 2��𝜌𝜌𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑖𝑖
𝑖𝑖>𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −�𝑙𝑙𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖)𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

, (3) 

where 𝑎𝑎𝑖𝑖  and �̂�𝛽𝑖𝑖  are strictly positive and represent the intercept and slope of the inverse 

demand function, respectively. The parameter 𝜌𝜌𝑖𝑖𝑖𝑖  is a measure of the degree of substitution 

between the goods. Goods 𝑖𝑖 and 𝑗𝑗 are substitutes if 𝜌𝜌𝑖𝑖𝑖𝑖 > 0, independent if 𝜌𝜌𝑖𝑖𝑖𝑖 = 0 and 

complements if 𝜌𝜌𝑖𝑖𝑖𝑖 < 0. Throughout the analysis we consider substitute products, thus 

𝜌𝜌𝑖𝑖𝑖𝑖 > 0.  Notice that product substitutability between 𝑖𝑖 and 𝑗𝑗 intensifies as 𝜌𝜌𝑖𝑖𝑖𝑖  increases. 

Capacity-sharing model. There exist various frameworks for modelling network 

congestion in the realm of capacity modelling.9 Our objective, however, is to develop a 

model that aligns with the Singh-Vives utility function, ultimately leading to a linear demand 

system that can be calibrated. To that end, we consider a capacity-sharing model in which 

each firm owns a processing facility (for example, the network). Additionally, the firm’s 

 
7 The concept of a representative consumer is in line with other economic models that recognize the 
diversity in consumer preferences. For instance, discrete choice models, where firms account for 
unobserved consumer preferences as random variables, mirror this approach by having consumers 
choose the option that maximizes their utility, similar to the representative consumer model. For an 
in-depth exploration, see Vives (1999). Additionally, see Anderson et al. (1992) for equivalences 
between representative consumer models and other approaches, such as characteristics and 
discrete choice models. 
8 This is also known as the Bowley demand model: Bowley (1924) uses a representative consumer 
with quadratic utility function to derive linear inverse demand functions. 
9 Commonly adopted in the literature are the M/M/1 queuing system (Choi and Kim, 2010; Bourreau, 
Kourandi and Valletti, 2015) and the capacity-sharing model (Johari, Weintraub, and Van Roy, 2010). 



8 
 

investment determines the processing capacity of its facility per unit time: if firm 𝑖𝑖 invests 

𝑢𝑢𝑖𝑖, then it has the capacity of processing Φ(𝑢𝑢𝑖𝑖) demand units per unit time, where the 

function Φ(𝑢𝑢𝑖𝑖) is assumed to be concave. 

  Therefore, if 𝑞𝑞𝑖𝑖  is the total mass of demand at firm 𝑖𝑖, and capacity is equally shared among 

consumption requests, then each request faces a processing delay of 𝑞𝑞𝑖𝑖/Φ(𝑢𝑢𝑖𝑖) time units. 

This approach to modelling congestion is also adopted in other papers as well. Xiao, Yang 

and Han (2007) use this functional form to analyse competition among private toll roads. 

Berstein, DeCroix and Bora Keskin (2020) employ it to examine competition on two-sided 

platforms with congestion effects on both demand and supply. Johari, Weintraub and Van 

Roy (2010) propose this model as a suitable for technological services, including wireless 

Internet service provision.10 Nguyen et al. (2011) use similar congestion cost assumptions 

to study the impact of additional unlicensed spectrum on competition in wireless services 

and congestion. They use a general function for congestion costs as the sum of a fixed 

component 𝑇𝑇𝑖𝑖 ≥ 0 and the product of a function 𝛼𝛼𝐶𝐶  and 𝑥𝑥, where 𝑥𝑥 is the number of 

customers and 𝛼𝛼𝐶𝐶  is a function that decreases with 𝐶𝐶 (capacity or bandwidth of spectrum). 

This function encompasses the one presented in this paper.11 

   We assume the following:  Φ(𝑢𝑢𝑖𝑖) = 𝜃𝜃𝑖𝑖𝑢𝑢𝑖𝑖  with 𝜃𝜃𝑖𝑖 > 0. As such, we may write: 

𝑙𝑙𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖) = 𝜇𝜇 �
𝑞𝑞𝑖𝑖

Φ(𝑢𝑢𝑖𝑖)
� = 𝜇𝜇 �

𝑞𝑞𝑖𝑖
𝜃𝜃𝑖𝑖𝑢𝑢𝑖𝑖

�  (4) 

with 𝜇𝜇 > 0. While the parameter 𝜃𝜃𝑖𝑖  maps investment levels to processing capacity per unit 

time, the parameter 𝜇𝜇 maps processing delays to congestion costs. By inserting the above 

expression into (3) we obtain 

𝑈𝑈� = �𝑎𝑎𝑖𝑖𝑞𝑞𝑖𝑖 −
1
2
���̂�𝛽𝑖𝑖𝑞𝑞𝑖𝑖2 + 2��𝜌𝜌𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑖𝑖

𝑖𝑖>𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��
𝑞𝑞𝑖𝑖
𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖

� 𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

, 

 
10 The model is discussed in the online appendix (Example EC.2) and referred to as the capacity-
sharing model. Its suitability for telecommunication services lies in its implication of constant 
returns to investment (Lemma EC.1. in the online appendix) which accommodates loss systems. In 
these systems, the cost to the user is given by the probability that making a call might result in a 
dropped call in a finite buffer queueing system. This contrasts with other systems such as M/G/1, 
which encompasses the M/M/1 system, where the service times follow an exponential distribution. 
The M/G/1 system accommodates delay systems where the cost to the user corresponds to a delay 
in a queuing system with an infinite buffer. The authors show that under M/G/1 system there are 
increasing returns to investment, and thus it is typically efficient for a single firm to serve the entire 
market (Example EC.4. in online appendix). 
11 In fact, in the example of Theorem 3 (p. 151), they assume 𝑇𝑇𝑖𝑖 = 0 and 𝛼𝛼𝐶𝐶 = 1/𝐶𝐶, which implies a 
congestion cost equal to 𝑥𝑥/𝐶𝐶, essentially the same congestion cost function that we adopt. 
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where the factor 𝑡𝑡𝑖𝑖 = 𝜃𝜃𝑖𝑖/𝜇𝜇 is an inverse measure of the efficiency of investment relative to 

congestion costs. A higher 𝑡𝑡𝑖𝑖  (due to either a higher 𝜃𝜃𝑖𝑖  or a lower 𝜇𝜇) indicates that 

investments in capacity are less effective in offsetting the cost of experiencing delays. The 

expression can be simplified as 

 
𝑈𝑈� = �𝑎𝑎𝑖𝑖𝑞𝑞𝑖𝑖 −

1
2
��𝛽𝛽𝑖𝑖𝑞𝑞𝑖𝑖2 + 2��𝜌𝜌𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑖𝑖

𝑖𝑖>𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
𝑛𝑛

𝑖𝑖=1

, (5) 

where 

𝛽𝛽𝑖𝑖 = �̂�𝛽𝑖𝑖 +
1
𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖

> 0 

with 𝜏𝜏𝑖𝑖 ≡ 𝑡𝑡𝑖𝑖/2 > 0. The expression (5) represents an extension of the Singh-Vives subutility 

function, modified to define 𝛽𝛽𝑖𝑖  as a decreasing function of the investment level 𝑢𝑢𝑖𝑖. This 

formulation is especially useful because it enables us to construct a utility function that is 

separable and quasi-linear in the numeraire good. Such a configuration removes income 

effects, yields linear demands, allows us to perform partial equilibrium analysis and, 

importantly, to use the consumer surplus as an appropriate measure of consumers’ welfare 

change.12 

  The representative consumer solves max𝒒𝒒  𝑈𝑈�−∑ 𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖𝑛𝑛
𝑖𝑖=1 . Given that the Hessian of 𝑈𝑈� is 

negative definite, implying that 𝑈𝑈� is a concave function of the n differentiated goods, we can 

derive the inverse demand functions, 𝑝𝑝𝑖𝑖 = 𝑃𝑃𝑖𝑖(𝒒𝒒), from consumer’s problem’s first-order 

conditions.13 This results in symmetric cross-price effects, where 𝜕𝜕𝑃𝑃𝑖𝑖/𝜕𝜕𝑞𝑞𝑖𝑖 = 𝜕𝜕𝑃𝑃𝑖𝑖/𝜕𝜕𝑞𝑞𝑖𝑖  for 𝑗𝑗 ≠

𝑖𝑖, and a downward-sloping inverse demand curve, 𝜕𝜕𝑃𝑃𝑖𝑖/𝜕𝜕𝑞𝑞𝑖𝑖 = −𝛽𝛽𝑖𝑖 < 0. Additionally, 

inverting the system of inverse demands yields direct demand functions: 𝐷𝐷(⋅) =

�𝐷𝐷1(⋅), … ,𝐷𝐷𝑛𝑛(⋅)�. These direct demands retain properties of being downward-sloping and 

exhibiting symmetric cross-price effects. 

Investments and demand. It is important to note that 𝜕𝜕𝑃𝑃𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖𝜕𝜕𝑞𝑞𝑖𝑖 > 0; that is, when firm 𝑖𝑖 

invests in capacity, its inverse demand function rotates outward while maintaining its 

position at the origin. Such an improvement in capacity decreases congestion costs and, 

consequently, expands the market: for a given price (lower than the intercept), the quantity 

demanded for firm 𝑖𝑖’s product increases. 

 
12 See Vives (1999, Ch. 3). 
13 Specifically, for 𝑞𝑞𝑖𝑖 > 0, the inverse demand for firm 𝑖𝑖 is given by 𝑝𝑝𝑖𝑖 = 𝜕𝜕𝑈𝑈�/𝜕𝜕𝑞𝑞𝑖𝑖. 
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3. Comparative Analysis of Investment Models 

In this section, we undertake a comparison between the capacity-sharing model and the 

quality-enhancing investments model. For clarity and ease of comparison, we assume 

symmetry throughout this analysis. This means the demand system we have discussed is 

symmetric (𝑎𝑎𝑖𝑖 = 𝑎𝑎, �̂�𝛽𝑖𝑖 = 𝛽𝛽, 𝜏𝜏𝑖𝑖 = 𝜏𝜏, 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜌𝜌), characterized by exchangeable functions 𝑞𝑞𝑖𝑖 =

𝐷𝐷(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖), for 𝑖𝑖 = 1, … ,𝑛𝑛, and the investment cost function satisfies Γ𝑖𝑖(𝑢𝑢) = Γ(𝑢𝑢). 

  A common assumption made in models with quality-enhancing investments is that an 

increase in firm 𝑖𝑖’s investment boosts demand for its product while diminishing demand for 

its competitor (Motta and Tarantino, 2021; Bourreau, Jullien and Lefouili, 2021), implying 

𝜕𝜕𝐷𝐷𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 ≥ 0 and 𝜕𝜕𝐷𝐷𝑘𝑘/𝜕𝜕𝑢𝑢𝑖𝑖 ≤ 0 for 𝑖𝑖 ≠ 𝑘𝑘. In the capacity-sharing model, these assumptions 

are also valid in the symmetric equilibrium when 𝛽𝛽 > 𝜌𝜌, mirroring the conventional 

assumption that own effects surpass cross-effects. 

  Our focus is on the most straightforward case of quality-enhancing investments where 

investment in quality lifts the intercept of the inverse demand function, thereby broadening 

the market and pushing demand outward.14 This scenario is prevalent in vertical product 

differentiation models with quality competition, where users differ in their tastes or, by 

analogy, in their incomes (Tirole, 1988). A similar parallel is drawn with persuasive 

advertising models, where investment in advertising increases consumers’ willingness to 

pay by elevating their reservation values (von der Fehr and Stevik, 1998).15 

  To delineate the differences between these models, we next formalize the capacity-sharing 

model under Assumption A1, and the quality-enhancing investments model under 

Assumption A1’: 

Assumption A1. In a capacity-sharing model 

𝑎𝑎𝑖𝑖 = 𝑎𝑎 and 𝛽𝛽𝑖𝑖 = 𝛽𝛽 + 1
𝜏𝜏𝑢𝑢𝑖𝑖

 

, with 𝑎𝑎 and 𝛽𝛽 as strictly positive constants, for 𝑖𝑖 = 1, … ,𝑛𝑛. 

Assumption A1’. In a model with quality-enhancing investments 

 
14 Recent studies utilizing this framework include Bayona and López (2018), and Motta and Tarantino 
(2021, pp. 16-17). See also Vives (2008, pp. 454-455). 
15 In this context, firms would rather avoid advertising as its costs, wasted in competition, yield no 
equilibrium advantage. Belleflamme and Petiz (2010, pp. 149-153) show that a similar outcome 
occurs in models where advertising shifts the distribution of consumer tastes in favour of the firm. 
See Bagwell (2007) for a survey on the literature on economic models on advertising. 
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𝑎𝑎𝑖𝑖 = 𝑎𝑎 + 𝛼𝛼(𝑢𝑢𝑖𝑖) and 𝛽𝛽𝑖𝑖 = 𝛽𝛽 

, where 𝑎𝑎 and 𝛽𝛽 are strictly positive constants, 𝛼𝛼(0) = 0 and 𝛼𝛼′ ≥ 0 (implying the willingness 

to pay increases with the level of investment in the product), for 𝑖𝑖 = 1, … ,𝑛𝑛. 

  Under Assumption A1’ the model admits a hedonic price transformation, allowing the 

game to pivot to one where firms compete in hedonic prices ℎ𝑖𝑖 = 𝑝𝑝𝑖𝑖 − 𝛼𝛼(𝑢𝑢𝑖𝑖) and investment 

levels 𝑢𝑢𝑖𝑖. This makes the standard quality model of particular interest since, as Motta and 

Tarantino (2021) underscore, within this framework, the effects of a merger are akin to those 

in a model with cost-reducing investments, characterized by 𝑎𝑎𝑖𝑖 = 𝑎𝑎, 𝛽𝛽𝑖𝑖 = 𝛽𝛽, and 𝑐𝑐𝑖𝑖(𝑢𝑢𝑖𝑖) as 

firm 𝑖𝑖’s marginal cost as a function of its investment level 𝑢𝑢𝑖𝑖, with 𝑐𝑐′ < 0, 𝑐𝑐′′ ≥ 0, 𝑐𝑐′′′ ≥ 0 

and 𝑐𝑐(0) ≥ 0.16 Motta and Tarantino (2021) also show that more intricate quality-adjusted 

models, akin to those by Sutton (1996) and Symeonidis (2000, 2003), mirror the quality-

enhancing investment model in their equivalence to models with cost-reducing 

investments. Thus, their insights on merger effects in the context of cost-reducing 

investments extend to these more elaborated demand function types as well. However, for 

general demand formulations, results remain ambiguous, necessitating a tailored analysis 

for different demand structures. For example, models that enable firms to differentiate their 

products through investments typically observe an increase in investment post-merger 

(Bourreau, Jullien and Lefouili, 2021). 

3.1 Models’ interpretations 
In both models, inverse demands are written as follows: 

𝑝𝑝𝑖𝑖(𝒒𝒒) = 𝑎𝑎𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑞𝑞𝑖𝑖 −�𝜌𝜌𝑞𝑞𝑖𝑖
𝑖𝑖≠𝑖𝑖

. 

  Under A1, 𝜕𝜕𝑝𝑝𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 = −𝜕𝜕𝛽𝛽𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 = 1/�𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖2� > 0, but under A1’, 𝜕𝜕𝑝𝑝𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 = 𝜕𝜕𝑎𝑎𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 =

𝛼𝛼′(𝑢𝑢𝑖𝑖) > 0. Hence, all else being equal, an increase in a firm’s investment level under A1 

rotates the inverse demand function outward, whereas under A1’, it shifts the function 

outward. The capacity-sharing model thus more accurately reflects competition in 

industries where investments alleviate user congestion costs. When the inverse demand 

function rotates outward (i.e. without a change in the intercept), the initial units’ willingness 

to pay remains largely unaffected by the investment, an intuitive outcome given these units’ 

negligible contribution to network congestion. On the contrary, as consumption escalates, 

 
16 Direct demands 𝐷𝐷(⋅) can be expressed as functions of hedonic prices ℎ𝑖𝑖(= 𝑝𝑝𝑖𝑖 − 𝛼𝛼(𝑢𝑢𝑖𝑖)) for 𝑖𝑖 =
1 …𝑛𝑛, allowing us to substitute 𝑝𝑝𝑖𝑖 with ℎ𝑖𝑖 + 𝛼𝛼(𝑢𝑢𝑖𝑖) in the profit function to reformulate it as: 
𝜋𝜋𝑖𝑖(ℎ𝑖𝑖 ,𝑢𝑢𝑖𝑖) = �ℎ𝑖𝑖 − �𝑐𝑐 − 𝛼𝛼(𝑢𝑢𝑖𝑖)��𝐷𝐷𝑖𝑖(⋅) − Γ𝑖𝑖(𝑢𝑢𝑖𝑖), where 𝛼𝛼 ≥ 0. 
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so does the incremental willingness to pay for each unit, emphasizing the increased value 

of reducing congestion. However, with a parallel shift in demand (i.e. with an increase at the 

intercept) – as seen with quality-enhancing investments – the willingness to pay uniformly 

rises across all units, regardless of whether they are the initial, less congested units or later 

ones where the network becomes increasingly congested. 

3.2 Investments and Pricing 
To grasp how investments influence pricing, let us first examine their effect on the firm’s 

marginal profit from adjusting (increasing or decreasing) its price. With symmetric firms, the 

profit for firm 𝑖𝑖 is given by 𝜋𝜋𝑖𝑖 = (𝑝𝑝𝑖𝑖 − 𝑐𝑐)𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) − Γ(𝑢𝑢𝑖𝑖), for 𝑖𝑖 = 1, … ,𝑛𝑛. The 

marginal profit with respect to price then is: 

 𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

= 𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) + (𝑝𝑝𝑖𝑖 − 𝑐𝑐)
𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖)

𝜕𝜕𝑝𝑝𝑖𝑖
. 

(6) 

  This marginal profit from altering the price encompasses two familiar effects: the change 

in revenue from selling the existing quantity at a new price (revenue effect), and the change 

in profit from the change in demand (demand effect). 

  To examine the impact of investments on pricing, assume all firms set the same price and 

investment level with 𝜕𝜕𝜋𝜋𝑖𝑖/𝜕𝜕𝑝𝑝𝑖𝑖 ≥ 0 (the inequality is binding at the equilibrium). If firm 𝑖𝑖 

raises its investment, in both models, this increases demand for firm 𝑖𝑖 (𝜕𝜕𝐷𝐷𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 > 0), thus 

increasing the revenue effect. As a result, the marginal profit from an increase in price rises, 

giving the firm the incentive to increase its price and recapture some of the new value 

created for users. Yet, the models diverge in the demand effect. In the quality model, 

investment does not affect the slope of the inverse demand function (only the intercept): a 

higher investment, therefore, does not impact marginal profit via the demand effect. On the 

other hand, in the capacity-sharing model, investment diminishes the absolute value of the 

slope of the inverse demand function, hence increasing the absolute value of the slope of 

the demand function. This indicates that after investing, reducing the price can draw more 

demand, thanks to reduced congestion costs. Conversely, increasing prices results in a 

more significant reduction in demand, which in turn reduces marginal profit, lessening the 

incentives to elevate prices in the capacity-sharing model as opposed to the quality-

enhancing investments model after an increase in investment. 

  Formally, by setting rival strategies at a symmetric profile of prices and investments, 𝑝𝑝𝑖𝑖 =

𝑝𝑝 and 𝑢𝑢𝑖𝑖 = 𝑢𝑢, 𝑗𝑗 ≠ 𝑖𝑖, we may analyse the (interior) symmetric equilibrium prices as a function 
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of firms’ investment level: 𝑝𝑝(𝑢𝑢). At equilibrium, the price-related first-order condition for 

firm 𝑖𝑖 simplifies to 

 
𝜙𝜙𝑖𝑖(𝑝𝑝;𝑢𝑢) ≡ 𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢) + (𝑝𝑝 − 𝑐𝑐)

𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)
𝜕𝜕𝑝𝑝𝑖𝑖

= 0, 
(7) 

with 𝑝𝑝 = 𝑝𝑝(𝑢𝑢). Differentiating this expression with respect to 𝑢𝑢 yields: 

 𝑑𝑑𝑝𝑝
𝑑𝑑𝑢𝑢

=
𝜕𝜕𝜙𝜙𝑖𝑖(𝑝𝑝;𝑢𝑢)/𝜕𝜕𝑢𝑢
−𝜕𝜕𝜙𝜙𝑖𝑖(𝑝𝑝;𝑢𝑢)/𝜕𝜕𝑝𝑝

. 
(8) 

Given 𝜕𝜕𝜙𝜙𝑖𝑖/𝜕𝜕𝑝𝑝 < 0,17 the sign of 𝑑𝑑𝑝𝑝/𝑑𝑑𝑢𝑢 equals the sign of 𝜕𝜕𝜙𝜙𝑖𝑖/𝜕𝜕𝑢𝑢, thus: 

 
𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 �

𝑑𝑑𝑝𝑝
𝑑𝑑𝑢𝑢
� = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 �

𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)
𝜕𝜕𝑢𝑢

+ (𝑝𝑝 − 𝑐𝑐)
𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)
𝜕𝜕𝑢𝑢𝜕𝜕𝑝𝑝

�. 
(9) 

  The first term within the braces of (9) is positive under A1 and A1’ in a duopoly scenario. 

Generally, assuming 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)/𝜕𝜕𝑢𝑢 > 0 echoes the assumption that own effects on demand 

outstrip cross effects after a uniform price increase across all firms, and is a standard 

assumption in investment models (Bourreau, Jullien and Lefouili, 2021). The second term 

in (9) is zero under A1’. Therefore, in the quality-enhancing investment model, 𝑑𝑑𝑝𝑝/𝑑𝑑𝑢𝑢 > 0, 

indicating firms’ propensity to increase prices with a uniform rise in investment. In contrast, 

under A1 the second term is negative, and, as demonstrated in the two-firm scenario below, 

surpasses the first term; the capacity-sharing model thus yields 𝑑𝑑𝑝𝑝/𝑑𝑑𝑢𝑢 < 0. 

3.3 Investment intensity 
Let 𝐷𝐷 ≡ 𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢) be the demand for a firm at the symmetric (interior) equilibrium of the 

full game. Drawing from the first-order condition regarding price, 𝜕𝜕𝜋𝜋𝑖𝑖/𝜕𝜕𝑝𝑝𝑖𝑖 = 0, where 

marginal profit is given by equation (6), we can express: 

𝐿𝐿 =
1
𝜂𝜂𝐷𝐷𝑝𝑝

, 

where 𝐿𝐿 ≡ 𝑝𝑝−𝑐𝑐
𝑝𝑝

 is the Lerner index, and 𝜂𝜂𝐷𝐷𝑝𝑝 = −𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢)
𝜕𝜕𝑝𝑝𝑖𝑖

𝑝𝑝
𝐷𝐷

 denotes the absolute value of 

the price elasticity of the demand. At this equilibrium, the first-order condition for 

investment is also satisfied: 

 𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖

= (𝑝𝑝 − 𝑐𝑐)
𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢)

𝜕𝜕𝑢𝑢𝑖𝑖
− Γ′(𝑢𝑢) = 0. 

(10) 

 
17 This result is inherent to the model’s design. Given linear demand in prices, we can write 𝜕𝜕𝜙𝜙𝑖𝑖/𝜕𝜕𝑝𝑝 =
𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)/𝜕𝜕𝑝𝑝 + 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)/𝜕𝜕𝑝𝑝𝑖𝑖. Furthermore, 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)

𝜕𝜕𝑝𝑝
= 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)

𝜕𝜕𝑝𝑝𝑖𝑖
+ ∑ 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝;𝑢𝑢)

𝜕𝜕𝑝𝑝𝑗𝑗𝑖𝑖≠𝑖𝑖 < 0 because own 

effects on demand surpass the cross effects. 
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This can be reformulated as: 

 
𝐿𝐿 =

𝜂𝜂Γ
𝜂𝜂𝐷𝐷𝑢𝑢

�
Γ(𝑢𝑢)
𝑝𝑝𝐷𝐷

�, 
(11) 

where 𝜂𝜂𝐷𝐷𝑢𝑢 = 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢)
𝜕𝜕𝑢𝑢𝑖𝑖

�𝑢𝑢
𝐷𝐷
� is the investment elasticity of demand, and 𝜂𝜂Γ = Γ′(𝑢𝑢) � 𝑢𝑢

Γ(𝑢𝑢)
� is 

the elasticity of the investment cost function. By aligning the two expressions for 𝐿𝐿, we 

obtain: 

 
𝑟𝑟 ≡

Γ(𝑢𝑢)
𝑝𝑝𝐷𝐷

=
𝜂𝜂𝐷𝐷𝑢𝑢
𝜂𝜂𝐷𝐷𝑝𝑝

�
1
𝜂𝜂Γ
�. 

(12) 

The above equation establishes the optimal investment expenditure as a fraction of 

revenue. At the equilibrium, investment intensity, 𝑟𝑟, equals the quotient of the investment 

elasticity of demand over the product of the price elasticity of demand and the elasticity of 

the investment cost function. When 𝜂𝜂Γ = 1 (due to Γ(𝑢𝑢) = 𝑢𝑢), the investment intensity is 

solely determined by the ratio of the two demand elasticities. 

4 Duopolistic Competition 

Next, to further clarify the differences between the two models, we examine a scenario 

involving two firms under Assumptions A1 and A1’. In line with the linear structure of the 

processing capacity function of the capacity model, Φ𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑢𝑢𝑖𝑖, under the quality model we 

posit that investments enhance consumers’ utility via the following quality-enhancing 

function: 𝛼𝛼(𝑢𝑢𝑖𝑖) = 𝜏𝜏𝑢𝑢𝑖𝑖  with 𝜏𝜏 > 0. Additionally, we assume a quadratic investment cost 

function, Γ(𝑢𝑢) = 𝑢𝑢2/2, which applies to both models.18 

4.1 Quality-Enhancing Investments Model 
Under A1’, the demand for firm 𝑖𝑖 is defined as: 

 
𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖� =

(𝑎𝑎𝑖𝑖 − 𝑝𝑝𝑖𝑖)𝛽𝛽 − �𝑎𝑎𝑖𝑖 − 𝑝𝑝𝑖𝑖�𝜌𝜌
𝛽𝛽2 − 𝜌𝜌2

, 
(13) 

where 𝛽𝛽 − 𝜌𝜌 > 0, and 𝑎𝑎𝑖𝑖 = 𝑎𝑎 + 𝜏𝜏𝑢𝑢𝑖𝑖. Therefore, 𝜕𝜕𝐷𝐷𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 > 0, 𝜕𝜕𝐷𝐷𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖 < 0 and 𝜕𝜕𝐷𝐷𝑖𝑖/𝜕𝜕𝑢𝑢𝑖𝑖𝜕𝜕𝑝𝑝𝑖𝑖 =

0.  

  From the corresponding first-order condition, we may obtain the profit-maximizing price, 

𝑝𝑝𝑖𝑖𝑟𝑟, as firm 𝑖𝑖’s best response to the pair �𝑝𝑝𝑖𝑖 ,𝑢𝑢𝑖𝑖� for a given investment level 𝑢𝑢𝑖𝑖: 𝑝𝑝𝑖𝑖𝑟𝑟 =

𝑓𝑓𝑝𝑝𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑢𝑢𝑖𝑖;𝑢𝑢𝑖𝑖�, 𝑗𝑗 ≠ 𝑖𝑖. We obtain that 𝜕𝜕𝑝𝑝𝑖𝑖𝑟𝑟/𝜕𝜕𝑢𝑢𝑖𝑖 = 𝜏𝜏/2 > 0 and 𝜕𝜕𝑝𝑝𝑖𝑖𝑟𝑟/𝜕𝜕𝑢𝑢𝑖𝑖 = −𝜌𝜌𝜏𝜏/(2𝛽𝛽) < 0. As 

 
18 We assume second-order conditions hold throughout the analysis. Additionally, in the numerical 
analyses presented later in this paper, we verify that these second-order conditions are indeed met. 
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can be intuitively derived from the previous analysis, in this model, firms are incentivized to 

raise prices with their investment levels and to lower them in response an increase in their 

rival’s investment. Solving the first-order condition for prices at uniform price and 

investment levels, 𝑝𝑝1 = 𝑝𝑝2 = 𝑝𝑝 and 𝑢𝑢1 = 𝑢𝑢2 = 𝑢𝑢, yields: 

 
𝑝𝑝 =

(𝛽𝛽 − 𝜌𝜌)(𝑎𝑎 + 𝑢𝑢𝜏𝜏) + 𝑐𝑐𝛽𝛽
2𝛽𝛽 − 𝜌𝜌

, 
(14) 

confirming, as discussed above, that 𝑑𝑑𝑝𝑝/𝑑𝑑𝑢𝑢 > 0. This outcome arises because investment, 

under A1’, shifts the demand outwards, affecting only the revenue effect and leading firms 

to increase prices after uniformly raising their investment levels. 

  The equilibrium price and investment levels are: 

 
𝑝𝑝1 = 𝑝𝑝2 = 𝑝𝑝 =

(𝛽𝛽2 − 𝜌𝜌2)𝑎𝑎 + [𝛽𝛽2 − (𝜏𝜏2 − 𝜌𝜌)𝛽𝛽]𝑐𝑐
𝛽𝛽2 − 𝜌𝜌2 + 𝛽𝛽(𝛽𝛽 + 𝜌𝜌 − 𝜏𝜏2)  

(15) 

and 

 
𝑢𝑢1 = 𝑢𝑢2 = 𝑢𝑢 =

(𝑎𝑎 − 𝑐𝑐)𝜏𝜏𝛽𝛽
𝛽𝛽2 − 𝜌𝜌2 + 𝛽𝛽(𝛽𝛽 + 𝜌𝜌 − 𝜏𝜏2). 

(16) 

At equilibrium: 

 
𝜂𝜂𝐷𝐷𝑝𝑝 =

(𝛽𝛽2 − 𝜌𝜌2)𝑎𝑎 + (𝛽𝛽 + 𝜌𝜌 − 𝜏𝜏2)𝛽𝛽𝑐𝑐
(𝛽𝛽2 − 𝜌𝜌2)(𝑎𝑎 − 𝑐𝑐) , 

(17) 

𝜂𝜂𝐷𝐷𝑢𝑢 = 𝛽𝛽𝜏𝜏2/(𝛽𝛽2 − 𝜌𝜌2) and 𝜂𝜂Γ = 2. With 𝑐𝑐 = 0, 𝜂𝜂𝐷𝐷𝑝𝑝 = 1, and as a result the investment 

intensity is driven by the demand’s investment elasticity, 𝑟𝑟 = 𝜂𝜂𝐷𝐷𝑢𝑢/2. More generally, 

 
𝑟𝑟 =

𝛽𝛽𝜏𝜏2(𝑎𝑎 − 𝑐𝑐)
2[(𝛽𝛽2 − 𝜌𝜌2)𝑎𝑎 + (𝛽𝛽 + 𝜌𝜌 − 𝜏𝜏2)𝛽𝛽𝑐𝑐]. 

(18) 

  Given that 𝜏𝜏 = 𝛼𝛼′(𝑢𝑢) is the marginal effect of investment on consumer utility, and 𝜕𝜕𝑟𝑟/𝜕𝜕𝜏𝜏 >

0, we have that when the marginal effect of investment on consumer utility increases, 

investment in quality becomes more intensive, as firms may recoup part of the additional 

consumer value through higher prices. 

4.2 Capacity-Sharing Model 
Under Assumption A1, the direct demands are: 

 
𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖� =

(𝑎𝑎 − 𝑝𝑝𝑖𝑖)𝛽𝛽𝑖𝑖 − �𝑎𝑎 − 𝑝𝑝𝑖𝑖�𝜌𝜌
𝛽𝛽𝑖𝑖𝛽𝛽𝑖𝑖 − 𝜌𝜌2

, 
(19) 

where 𝛽𝛽1,𝛽𝛽2 > 𝜌𝜌 and 𝛽𝛽1𝛽𝛽2 > 𝜌𝜌2. From the first-order condition regarding 𝑝𝑝𝑖𝑖, we can 

determine 𝑝𝑝𝑖𝑖𝑟𝑟 = 𝑓𝑓𝑝𝑝𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑢𝑢𝑖𝑖;𝑢𝑢𝑖𝑖�, for 𝑗𝑗 ≠ 𝑖𝑖; specifically, we find: 
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𝑝𝑝𝑖𝑖𝑟𝑟 =

𝑎𝑎 + 𝑐𝑐 + 𝜏𝜏�(𝑎𝑎 + 𝑐𝑐)𝛽𝛽 − 𝜌𝜌�𝑎𝑎 − 𝑝𝑝𝑖𝑖��𝑢𝑢𝑖𝑖
2�1 + 𝛽𝛽𝜏𝜏𝑢𝑢𝑖𝑖�

. 
(20) 

Hence, 𝜕𝜕𝑝𝑝𝑖𝑖𝑟𝑟/𝜕𝜕𝑢𝑢𝑖𝑖 = 0 and 𝜕𝜕𝑝𝑝𝑖𝑖𝑟𝑟/𝜕𝜕𝑢𝑢𝑖𝑖 = −𝜏𝜏𝜌𝜌�𝑎𝑎 − 𝑝𝑝𝑖𝑖�/ �2�1 + 𝛽𝛽𝜏𝜏𝑢𝑢𝑖𝑖�
2� < 0. Drawing from the 

analysis presented earlier, this model shows that firms lack the incentive to increase prices 

upon increasing their own investment, as the demand effect neutralizes the revenue effect. 

Firms are incentivized to reduce their prices, however, when their competitors increase 

their investments. 

  The equilibrium is characterized by the set of first-order conditions at the symmetric 

solution (𝑝𝑝,𝑢𝑢), formulated by the equations: 

 
𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢) + (𝑝𝑝 − 𝑐𝑐)

𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢)
𝜕𝜕𝑝𝑝𝑖𝑖

= 0 
(21) 

 
(𝑝𝑝 − 𝑐𝑐)

𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢)
𝜕𝜕𝑢𝑢𝑖𝑖

− 𝑢𝑢 = 0 
(22) 

, where 

 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢)
𝜕𝜕𝑝𝑝𝑖𝑖

= −
𝛽𝛽𝜏𝜏𝑢𝑢 + 1

𝜏𝜏𝑢𝑢 ��𝛽𝛽 + 1
𝜏𝜏𝑢𝑢�

2
− 𝜌𝜌2�

< 0 
(23) 

and 

 𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝,𝑝𝑝,𝑢𝑢,𝑢𝑢)
𝜕𝜕𝑢𝑢𝑖𝑖

=
(1 + 𝛽𝛽𝜏𝜏𝑢𝑢)(𝑎𝑎 − 𝑝𝑝)𝜏𝜏

[1 + 𝑢𝑢(𝛽𝛽 − 𝜌𝜌)𝜏𝜏][1 + 𝑢𝑢(𝛽𝛽 + 𝜌𝜌)𝜏𝜏]2 > 0. 
(24) 

  Given the non-linear nature of the system in terms of 𝑢𝑢, the equilibrium cannot be obtained 

explicitly for the price and investment. However, by solving the FOC related to price, 

equation (21), and using (23), we determine the price as a function of investment level at 

the symmetric equilibrium: 

 
𝑝𝑝 =

𝜏𝜏[(𝑎𝑎 + 𝑐𝑐)𝛽𝛽 − 𝑎𝑎𝜌𝜌]𝑢𝑢 + 𝑎𝑎 + 𝑐𝑐
2 + 𝜏𝜏(2𝛽𝛽 − 𝜌𝜌)𝑢𝑢

. 
(25) 

This confirms our best-response analysis indicating that 𝑑𝑑𝑝𝑝/𝑑𝑑𝑢𝑢 < 0. At the equilibrium, 

𝜂𝜂Γ = 2, but we cannot obtain explicit expressions for 𝜂𝜂𝐷𝐷𝑝𝑝  and 𝜂𝜂𝐷𝐷𝑢𝑢, except when 𝑐𝑐 = 0, where 

𝜂𝜂𝐷𝐷𝑝𝑝 = 1, thus making investment intensity contingent on the demand’s investment 

elasticity: r = 𝜂𝜂𝐷𝐷𝑢𝑢/2. More generally, we can establish that 

 𝑟𝑟 =
𝑎𝑎 − 𝑝𝑝

2𝑝𝑝[1 + 𝜏𝜏(𝛽𝛽 + 𝜌𝜌)𝑢𝑢], (26) 

where 𝑝𝑝 and 𝑢𝑢 are given by (22) and (25). 
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4.3 Simulation:  Investment intensities, Pricing, Efficiencies and 
Congestion 
To further elaborate on our understanding of pricing and investment intensity across the 

quality-enhancing and capacity-sharing models, this subsection first discusses investment 

intensities. We then analyse how gains in investment cost efficiency affect strategies in both 

models. Subsequently, we explore the strategic responses of firms when confronted with a 

shock that increases utility responsiveness to investment, such as increased network 

congestion due to higher user demand, a scenario currently prevalent in the 

telecommunications industry. 

4.3.1 Investment intensities 
Here, we conduct a comparative analysis of the investment intensity between the two 

models. For the quality-enhancing investments model, investment intensity is given by 

equation (18). For the capacity model, we cannot derive an explicit formula. To facilitate the 

comparison, we graphically represent investment intensity regions on the (𝜌𝜌, 𝜏𝜏) plane, 

considering 𝑎𝑎 = 10, 𝛽𝛽 = 1 and 𝑐𝑐 = 0. Under these values, investment intensity simplifies in 

the quality model to 𝑟𝑟 = 𝜏𝜏2/(2 − 2𝜌𝜌2), and is thus increasing in both 𝜏𝜏 and 𝜌𝜌. 

The range of 𝜌𝜌 that we consider extends from 0.05 (representing highly independent or 

differentiated products) to 0.8 (representing close substitutable products). In the quality-

enhancing investments model, 𝜏𝜏 influences investment in a manner analogous to how 𝜌𝜌 

affects prices. Specifically, at high 𝜌𝜌 values, a reduction in price can lead to a firm capturing 

the entire market demand, potentially breaking the existence of the interior equilibrium. A 

similar phenomenon occurs when 𝜏𝜏 is sufficiently high, and a firm marginally increases its 

investment level. For 𝜌𝜌 = 0.8, 𝜏𝜏 must be less than 𝜏𝜏̅ = 0.848528 so that the interior 

equilibrium exists. In the capacity model, 𝜏𝜏 values approaching zero can cause 𝛽𝛽 to tend to 

infinity. Then, to assure interior solutions, we consider a minimum 𝜏𝜏 value of 0.01; notice 

however that 𝜏𝜏 can potentially take any large number.19 

 
19 Unlike the quality model, where decreasing 𝜏𝜏 towards zero diminishes the investment’s impact on 
demand, the capacity model allows for 𝜏𝜏 to increase towards infinity, effectively nullifying the 
investment’s effect on demand. 
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Fig. 1. Investment intensity in the capacity-sharing model. Fig. 2. Investment intensity in the quality-enhancing 

demand model. 

In Figures 1 and 2, we depict the investment intensity regions for the capacity and quality 

models, respectively, revealing significant differences between them. Specifically, when 

consumers’ utility is highly responsive to investment levels – characterized by low 𝜏𝜏 in the 

capacity model and high 𝜏𝜏 in the quality model – the capacity model shows a maximum 

investment intensity of 50%.20 For a sufficiently low given 𝜏𝜏 value, this maximum intensity 

remains consistent across all 𝜌𝜌 values. Conversely, in the quality model, investment 

intensity varies with 𝜌𝜌 for a sufficiently high given 𝜏𝜏 value. Consider for example 𝜏𝜏 = 0.8, at 

low 𝜌𝜌 values, intensity ranges from 25 − 35%; for moderate values, it increases to 35 −

45%; and for values just above, it reaches 50%. However, investment intensity in the quality 

model can continue to rise as products become more closely substitutable, potentially 

reaching up to 100% of generated revenues. This scenario occurs when products are highly 

substitutable (𝜌𝜌 = 0.8), and 𝜏𝜏 reaches its maximum value (𝜏𝜏̅). 

The rationale behind the results in the quality-enhancing investments model lies in the 

firm’s ability to meet all of its demand without facing capacity constraints. When products 

are closely substitutable and 𝜏𝜏 is high, firms are motivated to engage in intense investment 

competition since a marginal improvement in the quality of their product relative to their 

competitors enables them to increase their market share. Unlike in the quality model, 

where investment directly translates into competitive advantage without the drawback of 

additional congestion costs, the capacity model presents a scenario where each gain in 

market share comes with the challenge of managing increased congestion, necessitating 

 
20 Recall that in the capacity model 𝜏𝜏𝑖𝑖, or equivalently, 𝑡𝑡𝑖𝑖, is an inverse measure of efficiency of 
investment relative to congestion costs. 



19 
 

further investment to expand capacity if the firm wishes to maintain its newly acquired 

market share. 

Investments and products substitutability. In both models, revenues (and profits) decrease 

as 𝜌𝜌 increases, as a higher 𝜌𝜌 value intensifies price competition. This effect, while leading 

to an increase of 𝑟𝑟 in both models, results in a more pronounced decrease in prices with 

rising 𝜌𝜌 in the quality model compared to the capacity model, which faces limitations in 

accommodating additional demand. Similarly, beginning with highly differentiated 

products, investment decreases with 𝜌𝜌 in both models, due to the diminishing return on 

investment. However, a distinctive feature of the quality model, as opposed to the capacity 

model, is that investment hits its minimum value at 𝜌𝜌 = 0.5. Beyond this point, investment 

in the quality model (and consequently, demand) begins to increase with 𝜌𝜌, driven by 

enhanced incentives to compete based on quality rather than price, which are already 

competitive. While investment in the quality-enhancing investments model is U-shaped 

with respect to 𝜌𝜌, it decreases monotonically in the capacity model. This shift towards 

tougher competition in quality investments is facilitated by the absence of capacity 

constraints, allowing firms to fully meet market demand. 

4.3.2 Investments and Pricing  
Now, we illustrate how increases in industry-wide investments (via efficiency gains in 

investment) have differing effects on prices and investment levels under the two models . 

We aim to explore the behaviour of these models under varying conditions of product 

substitutability and therefore competition intensity. For this purpose, we consider a 

scenario where 𝛽𝛽 = 1 and the product differentiation parameter 𝜌𝜌 varies from 0.2 

(indicating highly independent goods) to 0.6 (indicating highly substitutable products). 

Establishing a common baseline for comparing the two models is challenging, given that 𝜏𝜏 

influences them differently, making it impractical for comparison purposes to set the same 

𝜏𝜏 value. To address this issue, we assume a 𝜏𝜏 value that yields a similar investment intensity 

level when competition intensity is low (i.e., products are highly differentiated). For 𝜌𝜌 = 0.2 

and two firms, for example, the investment intensity in both models is 10%, with 𝜏𝜏 = 1.5 in 

the capacity model and 𝜏𝜏 = 0.5 in the quality-enhancing investments model. We assume 

𝑎𝑎 = 10 and 𝑐𝑐 = 1. 

We compare the benchmark case, where Γ = 𝑢𝑢2/2, to a case of greater investment cost 

efficiency, 𝑢𝑢2/4 (the rest of parameters remain constant in the two cases). The focus is on 

examining the consequences on prices following a reduction in investment costs, which 
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implies an increase in investment across all firms in the industry. Such a positive shift in 

investment costs could result from innovation or efficiencies related to a merger, such as 

lower capital costs or synergies from a restructuring of firms. 

𝝉𝝉 = 𝟎𝟎.𝟓𝟓 𝝆𝝆 = 𝟎𝟎.𝟐𝟐 𝝆𝝆 = 𝟎𝟎.𝟑𝟑 𝝆𝝆 = 𝟎𝟎.𝟒𝟒 𝝆𝝆 = 𝟎𝟎.𝟓𝟓 𝝆𝝆 = 𝟎𝟎.𝟔𝟔 
%𝚫𝚫𝒑𝒑 12.33 11.80 11.37 11.02 10.68 
%𝚫𝚫𝒒𝒒 15.06 14.62 14.37 14.29 14.37 
%𝚫𝚫𝒖𝒖 130.12 129.24 128.74 128.57 128.74 

Table 1. Quality-enhancing investments model. 
 

𝝉𝝉 = 𝟏𝟏.𝟓𝟓 𝝆𝝆 = 𝟎𝟎.𝟐𝟐 𝝆𝝆 = 𝟎𝟎.𝟑𝟑 𝝆𝝆 = 𝟎𝟎.𝟒𝟒 𝝆𝝆 = 𝟎𝟎.𝟓𝟓 𝝆𝝆 = 𝟎𝟎.𝟔𝟔 
%𝚫𝚫𝒑𝒑 -0.51 -0.87 -1.33 -1.92 -2.71 
%𝚫𝚫𝒒𝒒 6.35 6.39 6.49 6.65 6.87 
%𝚫𝚫𝒖𝒖 31.27 31.31 31.39 31.52 31.70 

Table 2. Capacity-sharing model. 

Tables 1 and 2 display the percentage change in key variables of interest (price, quantity and 

investment) at equilibrium. Table 1, which refers to the quality-enhancing investments 

model, shows that a 50% improvement in investment cost efficiency significantly 

stimulates investment, which increases by more than 100%. This, in turn, leads to higher 

equilibrium prices throughout the industry, with price increasing by more than 10%, as well 

as increased demand since the investment also shifts demand outward and expands the 

market. On the other hand, Table 2 relates to the capacity-sharing model. In this scenario, 

we observe that a 50% efficiency improvement in investment costs results in an investment 

increase that is about 30%. Unlike in the quality-enhancing investments model, equilibrium 

prices decrease as investment increase, in line with our prior analysis. 

5 Merger analysis 

In this section, we first present a case of competition among 𝑛𝑛 independent firms, which 

serves as our benchmark. We then present a scenario where two of these 𝑛𝑛 firms merge. 

We use 𝑝𝑝−𝑖𝑖  and 𝑢𝑢−𝑖𝑖  to represent the vector of prices and investments, respectively, 

excluding those set by firm 𝑖𝑖. Then, 𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) denotes the demand faced by firm 𝑖𝑖 

when it sets its own price and investment level at 𝑝𝑝𝑖𝑖  and 𝑢𝑢𝑖𝑖. For a given level of investments, 

a firm’s demand decreases with its own price and increases with its rivals’ prices. And, for 

a given level of prices, an increase in investment increases the quality of its product (in a 

quality model) or reduces congestion costs (in a capacity model), and as a result, increases 

its own demand. 
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Benchmark scenario. In the no merger scenario, each firm 𝑖𝑖 addresses the following 

maximisation problem: 

 max
𝑝𝑝𝑖𝑖,𝑢𝑢𝑖𝑖

𝜋𝜋𝑖𝑖 = (𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖)𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) − Γ𝑖𝑖(𝑢𝑢𝑖𝑖). (27) 

The first-order condition for the pricing and investment decisions are (for 𝑖𝑖 = 1, … ,𝑛𝑛): 

 𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

= 𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) + (𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖)
𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖)

𝜕𝜕𝑝𝑝𝑖𝑖
= 0 (28) 

 𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖

= (𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖)
𝜕𝜕𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖)

𝜕𝜕𝑢𝑢𝑖𝑖
− Γ𝑖𝑖′(𝑢𝑢𝑖𝑖) = 0. (29) 

  In the ensuing analysis, we assume that the firm’s problem is well-behaved, meaning that 

the profit function 𝜋𝜋𝑖𝑖  fulfils standard assumptions, ensuring the existence of a unique 

regular, symmetric interior equilibrium (Vives, 1999). Thus, the solution to the system of 

first-order conditions gives the equilibrium values of the price and investment for each firm 

in the benchmark. 

Merger scenario. Consider a situation where a merger occurs between firm 𝑗𝑗 and firm 𝑘𝑘, in 

the absence of efficiencies, the new entity faces the following problem: 

max
𝑝𝑝𝑗𝑗,𝑢𝑢𝑗𝑗,𝑝𝑝𝑘𝑘,𝑢𝑢𝑘𝑘

�𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖�𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖� + (𝑝𝑝𝑘𝑘 − 𝑐𝑐𝑘𝑘)𝐷𝐷𝑘𝑘(𝑝𝑝𝑘𝑘 ,𝑝𝑝−𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑢𝑢−𝑘𝑘) − Γ𝑖𝑖�𝑢𝑢𝑖𝑖� − Γ𝑘𝑘(𝑢𝑢𝑘𝑘), 

while the rest of firms 𝑖𝑖 = 1, … ,𝑛𝑛 with 𝑖𝑖 ≠ 𝑗𝑗, 𝑘𝑘, maximise 𝜋𝜋𝑖𝑖. In the Appendix, we provide the 

expressions for the first-order conditions of the merger, along with the formulas for welfare 

analysis (consumer surplus and total surplus). 

5.1 Efficiencies 
Mergers are strategic moves that can lead to significant efficiencies for the involved firms. 

These efficiencies might include:  

(i) Operational efficiency, which refers to more efficient production process 

allowing the merger to benefit from economies of scale, better utilisation of 

resources, and streamlined operations, leading to a reduction in cost per unit. 

This can be easily represented by pre-multiplying the marginal cost of the 

merging firms by a parameter 𝑥𝑥 ≤ 1;  

(ii) Investment cost efficiency, cost savings can be a significant outcome of mergers 

due to reductions in overhead expenses, elimination of duplicated costs in 

capacity expansion efforts, greater bargaining power with suppliers, and lower 

cost of capital due to the improved financial health of the combine entity. In our 
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model, this is represented by pre-multiplying the investment cost functions by 

(1 − 𝑑𝑑) with 0 ≤ 𝑑𝑑 < 1, making the investment cost for the merger equal to 

(1 − 𝑑𝑑) �Γ𝑖𝑖�𝑢𝑢𝑖𝑖� + Γ𝑘𝑘(𝑢𝑢𝑘𝑘)�. 
(30) 

(iii) Network allocation efficiency, particularly relevant in network industries like 

telecommunications, leads to better allocation of network resources, assets, or 

sites, and spectrum efficiencies. The merged entity benefits from network 

optimization and shared resources, which improves network capacity. This can 

be modelled by an increase in the capacity obtained per unit of investment: to 

achieve a given level of capacity, the merging firms need to invest less. This is 

expressed as follows: 

Φ�𝑢𝑢𝑖𝑖� = 1/�𝜎𝜎𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖� and Φ(𝑢𝑢𝑘𝑘) = 1/(𝜎𝜎𝑡𝑡𝑘𝑘𝑢𝑢𝑘𝑘) with 𝜎𝜎 ≥ 1. (31) 

  With these efficiencies, the merger maximizes the following expression: 

 𝜙𝜙𝑖𝑖𝑘𝑘 = �𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖�𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖� + (𝑝𝑝𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑐𝑐𝑘𝑘)𝐷𝐷𝑘𝑘(𝑝𝑝𝑘𝑘 ,𝑝𝑝−𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑢𝑢−𝑘𝑘)

− (1 − 𝑑𝑑) �Γ𝑖𝑖�𝑢𝑢𝑖𝑖� + Γ𝑘𝑘(𝑢𝑢𝑘𝑘)�, 

  (32) 

with 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘 ≤ 1, 0 ≤ 𝑑𝑑 < 1, 𝛽𝛽𝑖𝑖 = �̂�𝛽𝑖𝑖 + 1/�𝜎𝜎𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖� , 𝛽𝛽𝑘𝑘 = �̂�𝛽𝑘𝑘 + 1/(𝜎𝜎𝜏𝜏𝑘𝑘𝑢𝑢𝑘𝑘), and 𝜎𝜎 ≥ 1. 

5.2 Numerical analysis: quality-enhancing investments model vs. 
capacity-sharing model 
In this section, we present numerical results for a merger analysis of the two models 

discussed throughout the paper, with the primary goal of comparing the effects of a merger 

on prices and consumer surplus when the merging firms experience efficiencies that lead 

them to increase investments. Before exploring this issue, we first comment on the effects 

of a merger in the two models in the absence of efficiencies. We look at post-merger 

changes investment intensity and changes in price, investment, profits, consumer welfare 

and total welfare shown in the tables below. The letter ‘I’ refers to the firms inside the 

merger, and ‘O’ to the outside firms. 

As we did in the previous section, we assume 𝜏𝜏 = 0.5 in the quality model and 𝜏𝜏 = 1.5 in the 

capacity-sharing model. As a result, in both models with three firms, the investment 

intensity increases from 10% to 13% when 𝜌𝜌 = 0.2.21 

 
21 Prices, investment levels, quantities, profits, consumer surplus and welfare are provided in 
Tables 9 and 10 in the Appendix. 
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 𝜏𝜏 = 0.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.15 0.16 0.19 0.23 

%𝛥𝛥𝑝𝑝𝛥𝛥 8.92 13.68 18.61 23.64 28.50 
%𝛥𝛥𝑝𝑝𝛥𝛥 2.19 4.68 8.03 12.40 18.17 
%𝛥𝛥𝑢𝑢𝛥𝛥 -9.23 -12.56 -15.28 -17.57 -19.69 
%𝛥𝛥𝑢𝑢𝛥𝛥 2.19 4.68 8.03 12.40 18.17 
%𝛥𝛥𝜋𝜋𝛥𝛥 1.42 3.29 6.04 9.76 14.58 
%𝛥𝛥𝜋𝜋𝛥𝛥 4.43 9.57 16.71 26.34 39.65 
%𝛥𝛥𝐶𝐶𝛥𝛥 -10.38 -12.87 -14.05 -14.09 -13.06 
%𝛥𝛥𝛥𝛥 -3.52 -4.12 -4.16 -3.77 -3.02 

 

 𝜏𝜏 = 0.8 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.37 0.41 0.48 0.58 

%𝛥𝛥𝑝𝑝𝛥𝛥 6.16 9.42 12.26 13.58 9.66 
%𝛥𝛥𝑝𝑝𝛥𝛥 3.57 7.78 14.01 23.65 41.49 
%𝛥𝛥𝑢𝑢𝛥𝛥 -11.54 -15.83 -19.82 -24.28 -31.46 
%𝛥𝛥𝑢𝑢𝛥𝛥 3.57 7.78 14.01 23.65 41.49 
%𝛥𝛥𝜋𝜋𝛥𝛥 2.08 4.66 8.24 12.47 14.36 
%𝛥𝛥𝜋𝜋𝛥𝛥 7.26 16.16 29.99 52.89 100.20 
%𝛥𝛥𝐶𝐶𝛥𝛥 -12.29 -14.75 -15.50 -14.64 -11.63 
%𝛥𝛥𝛥𝛥 -4.77 -5.37 -5.15 -4.19 -2.19 

 

Table 5. Quality-enhancing investments model with 3 firms and no efficiencies. 
 

 𝜏𝜏 = 1.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.14 0.16 0.17 0.19 

%𝛥𝛥𝑝𝑝𝛥𝛥 7.50 11.24 15.00 18.78 22.54 

%𝛥𝛥𝑝𝑝𝛥𝛥 1.17 2.46 4.14 6.17 8.53 

%𝛥𝛥𝑢𝑢𝛥𝛥 -5.11 -7.10 -8.81 -10.28 -11.54 

%𝛥𝛥𝑢𝑢𝛥𝛥 0.91 1.90 3.20 4.78 6.66 

%𝛥𝛥𝜋𝜋𝛥𝛥 0.80 1.82 3.26 5.14 7.46 

%𝛥𝛥𝜋𝜋𝛥𝛥 2.66 5.66 9.67 14.71 20.90 

%𝛥𝛥𝐶𝐶𝛥𝛥 -8.31 -10.84 -12.56 -13.60 -14.01 

%𝛥𝛥𝛥𝛥 -2.84 -3.56 -3.93 -4.01 -3.86 
 

 𝜏𝜏 = 0.22 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.35 0.35 0.36 0.37 

%𝛥𝛥𝑝𝑝𝛥𝛥 3.27 4.81 6.30 7.73 9.12 
%𝛥𝛥𝑝𝑝𝛥𝛥 0.36 0.75 1.25 1.85 2.53 
%𝛥𝛥𝑢𝑢𝛥𝛥 -3.56 -5.05 -6.40 -7.63 -8.78 
%𝛥𝛥𝑢𝑢𝛥𝛥 0.41 0.86 1.43 2.10 2.88 
%𝛥𝛥𝜋𝜋𝛥𝛥 0.27 0.57 0.97 1.44 1.99 
%𝛥𝛥𝜋𝜋𝛥𝛥 1.05 2.22 3.72 5.55 7.66 
%𝛥𝛥𝐶𝐶𝛥𝛥 -5.24 -7.21 -8.86 -10.24 -11.40 
%𝛥𝛥𝛥𝛥 -2.14 -2.89 -3.47 -3.93 -4.28 

 

Table 6. Capacity-sharing model with 3 firms and no efficiencies. 
 

In both models, a merger without efficiencies detrimentally impacts consumer surplus, 

primarily due to the increased prices from all firms and reduced investments by the merging 

firms.22 The quality model predicts higher price increases compared to the capacity-sharing 

model, for both the merging firms and non-merging firms. The quality model predicts even 

larger price increases for non-merging firms when products are highly substitutable and 

consumer utility is highly sensitive to the level of investment. Similarly, the reduction in 

investment by merging firms is more pronounced in the quality model than in the capacity 

model; however, the quality model also predicts that non-merging firms will increase their 

investments by more compared to the capacity-sharing model. Nevertheless, there are no 

remarkable differences in the reduction in consumer surplus, although the negative impact 

on consumer surplus is slightly less pronounced in the capacity model except when 

products are highly substitutable and investment intensity is low. 

 
22 This result is in line with the findings of Federico et al. (2018), and Motta and Tarantino (2021). 
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The quality model exhibits more drastic variations compared to the no-merger scenario 

when products are less differentiated. For example, with three firms and high investment 

intensity, prices and investments of the outsider firm increase by more than 41%, and the 

investment of insider firms decreases by 31%. The capacity-sharing model, however, 

shows more moderate results: prices and investment of outsider firms increase by 2.5% 

and 2.8%, respectively, while the investment of insider firms falls by 8.7%. 

Finally, when we extend both models to four firms (Tables 11 and 12 in Appendix), we 

observe the expected (but significant) mitigating effect of increased competition on the 

detrimental outcomes from the merger, and that the impact of a merger on prices and 

investments is softened in both models. 23  

Efficiencies. In this subsection, we assume that the efficiencies realized by the merged 

firms reduce their investment cost by 25%, which is significant enough to increase the 

investment levels of the merged entities compared to the benchmark case across all 

scenarios (except when products are close substitutes in the capacity-sharing model with 

low investment intensity). Consistent with our analysis on investment and pricing, we find 

that the increase in both prices and investment is significantly higher in the quality model 

than in the capacity model (Tables 7 and 8 present percentage changes; Tables 13 and 14 

in Appendix present absolute values of the variables).  

 𝜏𝜏 = 0.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.15 0.16 0.19 0.23 

%𝛥𝛥𝑝𝑝𝛥𝛥 13.61 18.47 23.71 29.32 35.22 
%𝛥𝛥𝑝𝑝𝛥𝛥 1.27 3.30 6.12 9.73 14.29 
%𝛥𝛥𝑢𝑢𝛥𝛥 26.23 21.51 17.82 14.95 12.69 
%𝛥𝛥𝑢𝑢𝛥𝛥 1.27 3.30 6.12 9.73 14.29 
%𝛥𝛥𝜋𝜋𝛥𝛥 5.70 7.50 10.33 14.36 19.88 
%𝛥𝛥𝜋𝜋𝛥𝛥 2.55 6.71 12.61 20.41 30.63 
%𝛥𝛥𝐶𝐶𝛥𝛥 -6.11 -9.25 -10.87 -11.23 -10.45 
%𝛥𝛥𝛥𝛥 -0.34 -1.35 -1.69 -1.53 -1.00 

 

 𝜏𝜏 = 0.8 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.37 0.41 0.48 0.58 

%𝛥𝛥𝑝𝑝𝛥𝛥 34.88 38.70 44.16 51.65 63.32 

%𝛥𝛥𝑝𝑝𝛥𝛥 -3.84 -3.29 -2.10 -1.07 -2.74 

%𝛥𝛥𝑢𝑢𝛥𝛥 72.93 64.14 58.42 55.53 57.04 

%𝛥𝛥𝑢𝑢𝛥𝛥 -3.84 -3.29 -2.10 -1.07 -2.74 

%𝛥𝛥𝜋𝜋𝛥𝛥 29.30 31.93 38.04 49.68 75.63 

%𝛥𝛥𝜋𝜋𝛥𝛥 -7.52 -6.46 -4.16 -2.13 -5.40 

%𝛥𝛥𝐶𝐶𝛥𝛥 14.80 6.94 2.60 0.75 0.95 

%𝛥𝛥𝛥𝛥 15.84 11.86 9.74 8.90 9.20 
 

Table 7. Quality-enhancing investments model with 3 firms and efficiencies (𝑑𝑑 = 0.25). 
 

 
23 Specifically, the price increase following a merger diminishes, and the negative impact on the 
investment of the merging firms becomes less severe. Simultaneously, the positive impact on the 
investment of non-merging firms also decreases. The overall outcome is a significant reduction in 
the adverse effects of the merger on consumer surplus: In the quality model and low investment 
intensity scenario, the decrease in consumer surplus shifts from −10% to −6% for 𝜌𝜌 = 0.2 and from 
−13% to −5%  for 𝜌𝜌 = 0.6; similarly, in the capacity model, the fall in consumer surplus changes 
from −8.3% to −5% for 𝜌𝜌 = 0.2 and from −14% to −6.4% for 𝜌𝜌 = 0.6.  
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 𝜏𝜏 = 1.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.14 0.16 0.17 0.19 

%𝛥𝛥𝑝𝑝𝛥𝛥 7.47 11.18 14.89 18.60 22.26 
%𝛥𝛥𝑝𝑝𝛥𝛥 0.75 1.80 3.20 4.89 6.82 
%𝛥𝛥𝑢𝑢𝛥𝛥 6.26 4.06 2.19 0.61 -0.73 
%𝛥𝛥𝑢𝑢𝛥𝛥 0.65 1.54 2.73 4.21 5.97 
%𝛥𝛥𝜋𝜋𝛥𝛥 4.61 5.71 7.28 9.33 11.89 
%𝛥𝛥𝜋𝜋𝛥𝛥 1.80 4.34 7.81 12.19 17.51 
%𝛥𝛥𝐶𝐶𝛥𝛥 -6.79 -9.37 -11.12 -12.15 -12.55 
%𝛥𝛥𝛥𝛥 -0.91 -1.73 -2.19 -2.35 -2.25 

 

 𝜏𝜏 = 0.22 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.35 0.35 0.36 0.37 

%𝛥𝛥𝑝𝑝𝛥𝛥 3.27 4.80 6.28 7.71 9.09 
%𝛥𝛥𝑝𝑝𝛥𝛥 -0.71 -0.81 -0.79 -0.67 -0.47 
%𝛥𝛥𝑢𝑢𝛥𝛥 23.05 21.04 19.26 17.66 16.22 
%𝛥𝛥𝑢𝑢𝛥𝛥 -0.74 -0.75 -0.60 -0.31 0.09 
%𝛥𝛥𝜋𝜋𝛥𝛥 21.45 21.64 22.02 22.56 23.26 
%𝛥𝛥𝜋𝜋𝛥𝛥 -1.98 -2.16 -1.95 -1.42 -0.63 
%𝛥𝛥𝐶𝐶𝛥𝛥 4.43 1.92 -0.18 -1.94 -3.41 
%𝛥𝛥𝛥𝛥 9.38 8.04 6.94 6.05 5.31 

 

Table 8. Capacity-sharing model with 3 firms and efficiencies (𝑑𝑑 = 0.25). 
 

In industries with low investment intensity, a 25% reduction in investment costs results in 

higher quality/capacity. However, even though such increased investment benefits 

consumers, it may not be sufficient to fully offset the price increases caused by the merger 

(therefore consumer welfare may not necessarily increase). In industries with high 

investment intensity, total surplus increases across all considered 𝜌𝜌 parameter ranges in 

both models. In the quality model, consumer surplus also increases for all 𝜌𝜌 values, though 

it diminishes as products become more substitutable. In the capacity model, consumer 

surplus also rises when products range from moderately to highly differentiated.  

6 Model calibration: Example with 4 firms 

In this section, we consider a market involving four firms, specifically focusing on a merger 

between firms 1 and 2. Additionally, we will discuss how to calibrate this model using prices, 

quantities, diversion ratios, and levels of investment and congestion specific to each firm. 

6.1 The model 
We adopt the following specification for the investment cost function: 

 Γ𝑖𝑖(𝑢𝑢𝑖𝑖) = 𝜔𝜔𝑖𝑖𝑢𝑢𝑖𝑖
𝜅𝜅𝑖𝑖, where 𝑤𝑤𝑖𝑖 > 0 and 𝜅𝜅𝑖𝑖 ≥ 1. (33) 

This power function satisfies the assumptions,24 and it is chosen for both technical and 

economic reasons.25 The coefficient 𝜔𝜔𝑖𝑖  converts the units of investment in capacity into a 

monetary cost per unit period. 

 
24 Where Γ𝑖𝑖(0) = 0, Γ𝑖𝑖′ > 0, and Γ𝑖𝑖′′ ≥ 0. 
25 Technically, a higher value of 𝜅𝜅𝑖𝑖  enhances the concavity of the profit function, thereby increasing 
the likelihood that the second-order conditions are met, especially when 𝑡𝑡𝑖𝑖 is small where an interior 
equilibrium may not exist.  Economically, as previously discussed, there may be compelling reasons 
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  In the capacity-sharing model, the representative consumer problem, with utility function 

given by (5), yields the following inverse demand system: 

𝑝𝑝1(𝒒𝒒) = 𝑎𝑎1 − 𝛽𝛽1𝑞𝑞1 − 𝜌𝜌12𝑞𝑞2 − 𝜌𝜌13𝑞𝑞3 − 𝜌𝜌14𝑞𝑞4 

𝑝𝑝2(𝒒𝒒) = 𝑎𝑎2 − 𝜌𝜌12𝑞𝑞1 − 𝛽𝛽2𝑞𝑞2 − 𝜌𝜌23𝑞𝑞3 − 𝜌𝜌24𝑞𝑞4 

𝑝𝑝3(𝒒𝒒) = 𝑎𝑎3 − 𝜌𝜌13𝑞𝑞1 − 𝜌𝜌23𝑞𝑞2 − 𝛽𝛽3𝑞𝑞3 − 𝜌𝜌34𝑞𝑞4 

𝑝𝑝4(𝒒𝒒) = 𝑎𝑎4 − 𝜌𝜌14𝑞𝑞1 − 𝜌𝜌24𝑞𝑞2 − 𝜌𝜌34𝑞𝑞3 − 𝛽𝛽4𝑞𝑞4, 

(34) 

where 𝛽𝛽𝑖𝑖 = �̂�𝛽𝑖𝑖 + 1/(𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖) for all 𝑖𝑖 = 1, … ,4. Inverting the inverse demand system yields the 

following direct demands: 

𝐷𝐷1(𝑝𝑝1,𝑝𝑝−1,𝑢𝑢1,𝑢𝑢−1) = 𝐴𝐴1 + 𝐵𝐵1𝑝𝑝1 + 𝑀𝑀12𝑝𝑝2 + 𝑀𝑀13𝑝𝑝3 + 𝑀𝑀14𝑝𝑝4 

𝐷𝐷2(𝑝𝑝2,𝑝𝑝−2,𝑢𝑢2,𝑢𝑢−2) = 𝐴𝐴2 + 𝑀𝑀12𝑝𝑝1 + 𝐵𝐵2𝑝𝑝2 + 𝑀𝑀23𝑝𝑝3 + 𝑀𝑀24𝑝𝑝4 

𝐷𝐷3(𝑝𝑝3,𝑝𝑝−3,𝑢𝑢3,𝑢𝑢−3) = 𝐴𝐴3 + 𝑀𝑀13𝑝𝑝1 + 𝑀𝑀23𝑝𝑝2 + 𝐵𝐵3𝑝𝑝3 + 𝑀𝑀34𝑝𝑝4 

𝐷𝐷4(𝑝𝑝4,𝑝𝑝−4,𝑢𝑢4,𝑢𝑢−4) = 𝐴𝐴4 + 𝑀𝑀14𝑝𝑝1 + 𝑀𝑀24𝑝𝑝2 + 𝑀𝑀34𝑝𝑝3 + 𝐵𝐵4𝑝𝑝4, 

where 𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖  and 𝑀𝑀𝑖𝑖𝑖𝑖  are complex functions of 𝑎𝑎𝑖𝑖, 𝛽𝛽𝑖𝑖  (and, consequently, 𝑢𝑢𝑖𝑖), and 𝜌𝜌𝑖𝑖𝑖𝑖. The 

direct demands are linear in prices but non-linear in investment levels. They exhibit 

downward sloping and symmetric cross effects, as the Hessian of 𝑈𝑈� is negative definite and 

symmetric. 

  In the benchmark scenario (pre-merger), each firm 𝑖𝑖 = 1, … ,4 maximises the following 

expression: 

𝜋𝜋𝑖𝑖 = (𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖)𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) − 𝜔𝜔𝑖𝑖𝑢𝑢𝑖𝑖
𝜅𝜅𝑖𝑖 , (35) 

where 𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) is as given by the above direct demand system. The pre-merger 

equilibrium is the solution to the 8-equation system of first-order conditions derived from 

equations (28) and (29). 

  Post-merger, the merged entity maximises 𝜙𝜙𝑖𝑖𝑘𝑘  as given by equation   (32), while the 

remaining firms each maximise 𝜋𝜋𝑖𝑖.26  

 
to adopt a strictly increasing rate of growth for the investment cost function, which is attainable in 
this framework with 𝜅𝜅𝑖𝑖 > 1. Additionally, this function’s flexibility allows 𝑢𝑢𝑖𝑖 to serve as a proxy variable 
rather than just representing investment levels, accommodating various interpretations that may be 
needed for quantitative merger analyses. 
26 The equilibrium is the solution to system of first-order conditions outlined in equations (41) to (44) 
(provided in Appendix), where 𝑗𝑗 = 1 and 𝑘𝑘 = 2, and equations (28) and (29) for 𝑖𝑖 = 3,4. 
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6.2 Calibration 
In this subsection, we explain the calibration of the model to quantify merger effects in 

industries where network capacity, such as in fixed or mobile communications, plays a 

critical role. We aim to find values for unknown parameters so that the equilibrium of the 

non-cooperative game reflects observed market values. 

  Suppose we have observable data including average monthly charges, quantities 

demanded, and margins: �̅�𝑝1, �̅�𝑝2, �̅�𝑝3, �̅�𝑝4,𝑞𝑞�1, 𝑞𝑞�2, 𝑞𝑞�3, 𝑞𝑞�4,𝑚𝑚�1,𝑚𝑚�2,𝑚𝑚�3 and 𝑚𝑚�4. First, we will 

calibrate for marginal costs and the parameters 𝐵𝐵𝑖𝑖  of direct demands. And, after that, using 

observed diversion ratios, 𝐷𝐷�𝑖𝑖𝑖𝑖, we will calibrate the parameters 𝑀𝑀𝑖𝑖𝑖𝑖  of direct demands. 

Lastly, the investment cost function will be calibrated with observed investment levels 

𝑢𝑢�1,𝑢𝑢�2,𝑢𝑢�3 and 𝑢𝑢�4. 

Marginal costs. The marginal costs are calibrated using the margin definition and observed 

charges and margins: 𝑚𝑚�𝑖𝑖 = (�̅�𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖)/�̅�𝑝𝑖𝑖. The calibrated marginal costs are then: 

𝑐𝑐𝑖𝑖𝑐𝑐 = �̅�𝑝𝑖𝑖(1 −𝑚𝑚�𝑖𝑖), 

where, from now on, the superscript 𝑐𝑐 denotes a calibrated value. 

Parameters 𝑩𝑩𝒊𝒊. For parameters 𝐵𝐵𝑖𝑖, using the first-order condition with respect to price, 

equation (28), we can write: 𝐵𝐵𝑖𝑖 = 𝜕𝜕𝐷𝐷𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

= −𝐷𝐷𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖)/(�̅�𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑐𝑐). Substituting 

observed values into this equation allows us to calibrate 𝐵𝐵𝑖𝑖  for all 𝑖𝑖 = 1, … ,4: 

𝐵𝐵𝑖𝑖𝑐𝑐 = −
𝑞𝑞�𝑖𝑖
�̅�𝑝𝑖𝑖𝑚𝑚�𝑖𝑖

. 

Parameters 𝑴𝑴𝒋𝒋𝒊𝒊. Let 

𝐷𝐷𝑖𝑖𝑖𝑖 = −�

𝜕𝜕𝐷𝐷𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖
�

𝜕𝜕𝐷𝐷𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖�

� 

be the diversion ratio from firm 𝑖𝑖 to firm 𝑗𝑗. Solving this for 𝜕𝜕𝐷𝐷𝑖𝑖/𝜕𝜕𝑝𝑝𝑖𝑖, we have 

 
𝑀𝑀𝑖𝑖𝑖𝑖 =

𝜕𝜕𝐷𝐷𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

= −𝐷𝐷𝑖𝑖𝑖𝑖 �
𝜕𝜕𝐷𝐷𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

� = −𝐷𝐷𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖 . (36) 

If we have limited observed diversion ratios, such as: 𝐷𝐷�12,𝐷𝐷�13,𝐷𝐷�14,𝐷𝐷�23,𝐷𝐷�24 and 𝐷𝐷�34, we can 

use Equation (36) to calibrate the corresponding 𝑀𝑀𝑖𝑖𝑖𝑖. For instance, 𝑀𝑀12
𝑐𝑐 = −𝐷𝐷�21𝐵𝐵2𝑐𝑐, 𝑀𝑀13

𝑐𝑐 =

−𝐷𝐷�31/𝐵𝐵3𝑐𝑐, 𝑀𝑀14
𝑐𝑐 = −𝐷𝐷�41𝐵𝐵4𝑐𝑐, 𝑀𝑀23

𝑐𝑐 = −𝐷𝐷�32𝐵𝐵3𝑐𝑐, 𝑀𝑀24
𝑐𝑐 = −𝐷𝐷�42𝐵𝐵4𝑐𝑐  and 𝑀𝑀34

𝑐𝑐 = −𝐷𝐷�43𝐵𝐵4𝑐𝑐. When 

surveys provide diversion ratios in both directions (𝐷𝐷�𝑖𝑖𝑖𝑖  and 𝐷𝐷�𝑖𝑖𝑖𝑖  with 𝑗𝑗 ≠ 𝑖𝑖), we can calibrate 
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two values for each 𝑀𝑀𝑖𝑖𝑖𝑖. Considering 𝑀𝑀12 and the symmetry of the demand system, we get: 

𝑀𝑀12: 𝑀𝑀12
𝑐𝑐 = 𝜕𝜕𝐷𝐷1/𝜕𝜕𝑝𝑝2 = −𝐷𝐷�21𝐵𝐵2𝑐𝑐  and 𝑀𝑀12

𝑐𝑐 = 𝜕𝜕𝐷𝐷2/𝜕𝜕𝑝𝑝1 = −𝐷𝐷�12𝐵𝐵1𝑐𝑐. 

Suppose we have the full set of observed diversion ratios; we get two potential calibrated 

values for each 𝑀𝑀𝑖𝑖𝑖𝑖: 𝑀𝑀𝑖𝑖𝑖𝑖𝑐𝑐 ∈ �−𝐷𝐷�𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑐𝑐 ,−𝐷𝐷�𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑐𝑐�. Frequently, these values may not be equal, 

leading to an over-identified model: with four firms, there exist six 𝑀𝑀𝑖𝑖𝑖𝑖  parameters, each with 

two potential calibrated values, resulting in 26 = 64 possible combinations of 𝑀𝑀𝑖𝑖𝑖𝑖  values 

for calibrating the model. Let combination 𝑘𝑘 (where 𝑘𝑘 = 1, … ,64) be represented by ℂ𝑘𝑘 =

�𝑀𝑀12
𝑐𝑐𝑘𝑘 ,𝑀𝑀13

𝑐𝑐𝑘𝑘 ,𝑀𝑀14
𝑐𝑐𝑘𝑘 ,𝑀𝑀23

𝑐𝑐𝑘𝑘 ,𝑀𝑀24
𝑐𝑐𝑘𝑘 ,𝑀𝑀34

𝑐𝑐𝑘𝑘�, with 𝑀𝑀𝑖𝑖𝑖𝑖
𝑐𝑐𝑘𝑘 ∈ �−𝐷𝐷�𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑐𝑐 ,−𝐷𝐷�𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑐𝑐� and 𝑘𝑘 = 1, … ,64. We have: 

 ℂ1 = (−𝐷𝐷�21𝐵𝐵2𝑐𝑐 ,−𝐷𝐷�31𝐵𝐵3𝑐𝑐 ,−𝐷𝐷�41𝐵𝐵4𝑐𝑐 ,−𝐷𝐷�32𝐵𝐵3𝑐𝑐 ,−𝐷𝐷�42𝐵𝐵4𝑐𝑐 ,−𝐷𝐷�43𝐵𝐵4𝑐𝑐)
ℂ2 = (−𝐷𝐷�21𝐵𝐵2𝑐𝑐 ,−𝐷𝐷�31𝐵𝐵3𝑐𝑐 ,−𝐷𝐷�41𝐵𝐵4𝑐𝑐 ,−𝐷𝐷�32𝐵𝐵3𝑐𝑐 ,−𝐷𝐷�42𝐵𝐵4𝑐𝑐 ,−𝐷𝐷�34𝐵𝐵3𝑐𝑐)

⋮
ℂ64 = (−𝐷𝐷�12𝐵𝐵1𝑐𝑐 ,−𝐷𝐷�13𝐵𝐵1𝑐𝑐 ,−𝐷𝐷�14𝐵𝐵1𝑐𝑐 ,−𝐷𝐷�23𝐵𝐵2𝑐𝑐 ,−𝐷𝐷�24𝐵𝐵2𝑐𝑐 ,−𝐷𝐷�34𝐵𝐵3𝑐𝑐).

 

(37) 

The first combination employs 𝑀𝑀𝑖𝑖𝑖𝑖𝑐𝑐 = −𝐷𝐷�𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑐𝑐 for all 𝑗𝑗 ≠ 𝑖𝑖, while the last uses 𝑀𝑀𝑖𝑖𝑖𝑖𝑐𝑐 = −𝐷𝐷�𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖. 

Over-identification in this context arises for two primary reasons: firstly, and obviously, 

because the available information exceeds what is necessary to calibrate the model; and 

secondly, because the model, being a simplification of reality, cannot fully capture all the 

underlying complexities that might reconcile conflicting pieces of information. It is 

important to note that such over-identification issues are typical in IO models where 

demand functions, derived from the consumer’s problem, are symmetric. 

To address this over-identification, we may select the combination ℂ𝑘𝑘  that yields the lowest 

sum of squared errors between the model-implied and observed diversion ratios. From 

Equation (36), we have that  𝐷𝐷𝑖𝑖𝑖𝑖 = −𝑀𝑀𝑖𝑖𝑖𝑖/𝐵𝐵𝑖𝑖. Therefore, for a given combination 𝑘𝑘, the sum 

of squared errors for parameter 𝑀𝑀𝑖𝑖𝑖𝑖  can be calculated as: 

𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘 = �−
𝑀𝑀𝑖𝑖𝑖𝑖
𝑐𝑐𝑘𝑘

𝐵𝐵𝑖𝑖𝑐𝑐
− 𝐷𝐷�𝑖𝑖𝑖𝑖�

2

+ �−
𝑀𝑀𝑖𝑖𝑖𝑖
𝑐𝑐𝑘𝑘

𝐵𝐵𝑖𝑖𝑐𝑐
− 𝐷𝐷�𝑖𝑖𝑖𝑖�

2

. 

In each combination 𝑘𝑘, one of the two components of 𝜀𝜀𝑖𝑖𝑖𝑖  will be zero, while the other will 

generate an error. We can then compute a measure of error for each combination 𝑘𝑘: 

𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘 = 𝜀𝜀12𝑘𝑘 + 𝜀𝜀13𝑘𝑘 + 𝜀𝜀14𝑘𝑘 + 𝜀𝜀23𝑘𝑘 + 𝜀𝜀24𝑘𝑘 + 𝜀𝜀34𝑘𝑘 , 

and calibrate the 𝑀𝑀𝑖𝑖𝑖𝑖  parameters based on the combination ℂ𝑘𝑘  that produces the lowest 

error measure (i.e., that solves min{𝑒𝑒𝑟𝑟𝑟𝑟1, … , 𝑒𝑒𝑟𝑟𝑟𝑟64}) by using the diversion ratios of the 

corresponding set ℂ𝑘𝑘  in equation (37).  
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Utility function calibration. For welfare analysis we need to calibrate the parameters of the 

utility function: 𝑎𝑎𝑖𝑖 ,𝛽𝛽𝑖𝑖 ,𝜌𝜌𝑖𝑖𝑖𝑖. Initially, we focus on calibrating the values of 𝐴𝐴𝑖𝑖. By inserting the 

calibrated parameters 𝐵𝐵𝑖𝑖𝑐𝑐  and 𝑀𝑀𝑖𝑖𝑖𝑖𝑐𝑐  into the direct demand system, along with observed 

prices and quantities demanded, and then solving for 𝐴𝐴𝑖𝑖  we can obtain calibrated values as 

follows: 

𝐴𝐴1𝑐𝑐 = 𝑞𝑞�1 − 𝐵𝐵1𝑐𝑐�̅�𝑝1 − 𝑀𝑀12
𝑐𝑐 �̅�𝑝2 − 𝑀𝑀13

𝑐𝑐 �̅�𝑝3 − 𝑀𝑀14
𝑐𝑐 �̅�𝑝4 

𝐴𝐴2𝑐𝑐 = 𝑞𝑞�2 − 𝑀𝑀12
𝑐𝑐 �̅�𝑝1 − 𝐵𝐵2𝑐𝑐�̅�𝑝2 − 𝑀𝑀23

𝑐𝑐 �̅�𝑝3 − 𝑀𝑀24
𝑐𝑐 �̅�𝑝4 

𝐴𝐴3𝑐𝑐 = 𝑞𝑞�3 − 𝑀𝑀13
𝑐𝑐 �̅�𝑝1 − 𝑀𝑀23

𝑐𝑐 �̅�𝑝2 − 𝐵𝐵3𝑐𝑐�̅�𝑝3 − 𝑀𝑀34
𝑐𝑐 �̅�𝑝4 

𝐴𝐴4𝑐𝑐 = 𝑞𝑞�4 − 𝑀𝑀14
𝑐𝑐 �̅�𝑝1 − 𝑀𝑀24

𝑐𝑐 �̅�𝑝2 − 𝑀𝑀34
𝑐𝑐 �̅�𝑝3 − 𝐵𝐵4𝑐𝑐�̅�𝑝4. 

It is important to note that 𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖  and 𝑀𝑀𝑖𝑖𝑖𝑖  are complex functions of 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4, 𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3, 

𝛽𝛽4, 𝜌𝜌12, 𝜌𝜌13, 𝜌𝜌14, 𝜌𝜌23, 𝜌𝜌24 and 𝜌𝜌34. By setting 𝐴𝐴1 = 𝐴𝐴1𝑐𝑐, 𝐴𝐴2 = 𝐴𝐴2𝑐𝑐 , 𝐴𝐴3 = 𝐴𝐴3𝑐𝑐 , 𝐴𝐴4 = 𝐴𝐴4𝑐𝑐 , 𝐵𝐵1 = 𝐵𝐵1𝑐𝑐, 

𝐵𝐵2 = 𝐵𝐵2𝑐𝑐, 𝐵𝐵3 = 𝐵𝐵3𝑐𝑐, 𝐵𝐵4 = 𝐵𝐵4𝑐𝑐, 𝑀𝑀12 = 𝑀𝑀12
𝑐𝑐 , 𝑀𝑀13 = 𝑀𝑀13

𝑐𝑐 , 𝑀𝑀14 = 𝑀𝑀14
𝑐𝑐 , 𝑀𝑀23 = 𝑀𝑀23

𝑐𝑐 , 𝑀𝑀24 = 𝑀𝑀24
𝑐𝑐 , 

𝑀𝑀34 = 𝑀𝑀34
𝑐𝑐 , we establish a system of 14 equations with 14 unknown variables, solvable 

through numerical methods. Solving this system provides the calibrated values 𝑎𝑎𝑖𝑖𝑐𝑐, 𝛽𝛽𝑖𝑖𝑐𝑐  and 

𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐 . 

Congestion costs. Congestion costs are modelled through the function 𝑙𝑙𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖) =

𝜇𝜇𝑞𝑞𝑖𝑖/(𝜃𝜃𝑖𝑖𝑢𝑢𝑖𝑖) = 𝑞𝑞𝑖𝑖/(𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖), which is captured by the 𝛽𝛽𝑖𝑖  parameter in the utility function: 𝛽𝛽𝑖𝑖 =

�̂�𝛽𝑖𝑖 + 1/(𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖) with 𝜏𝜏𝑖𝑖 ≡ 𝑡𝑡𝑖𝑖/2. For each firm 𝑖𝑖, the calibrated value 𝛽𝛽𝑖𝑖𝑐𝑐  and the observed 

investment level 𝑢𝑢�𝑖𝑖  are known, but we face a challenge with one equation and two unknown 

variables: �̂�𝛽𝑖𝑖  and 𝜏𝜏𝑖𝑖  (or equivalently, 𝑡𝑡𝑖𝑖). We propose three strategies to tackle this under-

identification: 

1. Calibrating from observed congestion costs: If data on consumers’ average 

congestion costs for each firm 𝑖𝑖 (𝑙𝑙�̅�𝑖) are available or, alternatively, can be derived 

from surveys on consumers’ willingness to pay for related attributes, we can 

calibrate 𝑡𝑡𝑖𝑖  by solving 𝑙𝑙�̅�𝑖 = 𝑞𝑞�𝑖𝑖/(𝑡𝑡𝑖𝑖𝑢𝑢�𝑖𝑖) for 𝑡𝑡𝑖𝑖, yielding 𝑡𝑡𝑖𝑖𝑐𝑐  and consequently, 𝜏𝜏𝑖𝑖𝑐𝑐 = 𝑡𝑡𝑖𝑖𝑐𝑐/2. 

This leads to the calibrated value of �̂�𝛽𝑖𝑖:  

�̂�𝛽𝑖𝑖𝑐𝑐 = 𝛽𝛽𝑖𝑖𝑐𝑐 −
1

𝜏𝜏𝑖𝑖𝑐𝑐𝑢𝑢�𝑖𝑖
. 

(38) 

2. Using elasticities for calibration: Focusing on the elasticity of the absolute value of 

the inverse demand function’s slope, 𝛽𝛽𝑖𝑖, we can calibrate 𝜏𝜏𝑖𝑖. The elasticity 𝐸𝐸𝛽𝛽𝑖𝑖  is 

given by: 
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 𝐸𝐸𝛽𝛽𝑖𝑖 = −
𝜕𝜕𝛽𝛽𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖
𝛽𝛽𝑖𝑖

=
1

𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖𝛽𝛽𝑖𝑖
. 

(39) 

Suppose that we know that a one percent increase in firm’s 𝑖𝑖 investment decreases 

the slope of its inverse demand function by 𝐸𝐸�𝛽𝛽𝑖𝑖 > 0 percent, then we can calibrate 

𝜏𝜏𝑖𝑖  by substituting into the above equation and solving for 𝜏𝜏𝑖𝑖: 𝜏𝜏𝑖𝑖𝑐𝑐 = 1/�𝐸𝐸�𝛽𝛽𝑖𝑖𝑢𝑢�𝑖𝑖𝛽𝛽𝑖𝑖
𝑐𝑐�. Given 

that inverse demand corresponds to price and is the same as the average revenue, 

this elasticity can be inferred from data on how variations in investment levels 

impact average revenue.27 This elasticity influences the incentives to invest and 

determines the relative changes in prices and investment due to the merger. Given 

that this approach entails calibrating the parameter 𝜏𝜏𝑖𝑖  so that elasticity at 

equilibrium equals the predetermined value of 𝐸𝐸�𝛽𝛽𝑖𝑖, the specific level of 𝑢𝑢𝑖𝑖  used for 

calibration becomes irrelevant, only the product 𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖  matters. Numerical 

simulations confirm that, although the absolute values of equilibrium prices and 

investment levels post-merger shift depending on the observed 𝑢𝑢𝑖𝑖  profile employed 

for calibration, the impact of the merger on the relative variation of equilibrium 

prices and investments remains independent of this profile, relying on the 

predetermined levels of elasticity. 

3. Calibrating from observed congestion levels: In the absence of direct data on 

congestion costs and elasticities, we may use congestion levels for each firm 𝑖𝑖 

(such as processing delays) as 𝜗𝜗𝑖𝑖 = 𝑞𝑞𝑖𝑖/(𝜃𝜃𝑖𝑖𝑢𝑢𝑖𝑖), where 𝜃𝜃𝑖𝑖 > 0. Using this definition 

and observed congestion levels �̅�𝜗𝑖𝑖  along with known quantities and investment 

levels, we can calibrate the parameter 𝜃𝜃𝑖𝑖  using the equation 𝜃𝜃𝑖𝑖𝑐𝑐 = 𝑞𝑞�𝑖𝑖
�𝜗𝜗�𝑖𝑖𝑢𝑢�𝑖𝑖�

. To complete 

the calibration of congestion costs: 𝑙𝑙𝑖𝑖(𝑞𝑞𝑖𝑖 ,𝑢𝑢𝑖𝑖) = 𝜇𝜇 � 𝑞𝑞𝑖𝑖
𝜃𝜃𝑖𝑖𝑢𝑢𝑖𝑖

�, we can determine a valid 

value for 𝜇𝜇 (denoted �̅�𝜇) from consumer surveys or using proxies and conduct 

sensitivity analyses. This approach yields 𝑡𝑡𝑖𝑖𝑐𝑐 = 𝜃𝜃𝑖𝑖𝑐𝑐/�̅�𝜇  and 𝜏𝜏𝑖𝑖𝑐𝑐 = 𝜃𝜃𝑖𝑖𝑐𝑐/(2�̅�𝜇), enabling 

the calibration of �̂�𝛽𝑖𝑖. We may then calibrate the elasticities 𝐸𝐸𝛽𝛽𝑖𝑖 , which, as previously 

mentioned, are critical for understanding the relative impacts of the merger on 

strategic variables. Notice that, by inserting 𝜏𝜏𝑖𝑖𝑐𝑐 = 𝜃𝜃𝑖𝑖𝑐𝑐/(2�̅�𝜇) into (39) we can write 

 
27 The value of this calibration strategy lies not in greater identification power, but in using elasticity 
as an indicative economic variable to which an easily interpretable, economically meaningful value 
can be assigned, in contrast to other variables. Of course, when determining the elasticity value 
using variations in investment levels relative to average revenue, an econometric analysis should be 
conducted, complementing the model calibration exercise. 
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𝐸𝐸𝛽𝛽𝑖𝑖
𝑐𝑐 = (2�̅�𝜇�̅�𝜗𝑖𝑖)/(𝛽𝛽𝑖𝑖𝑐𝑐𝑞𝑞�𝑖𝑖), which does not depend on the observed 𝑢𝑢𝑖𝑖  level used for 

model calibration.28 

Investment cost function. By calibrating 𝜔𝜔𝑖𝑖  for each firm 𝑖𝑖, we can ensure that in the 

equilibrium of the non-cooperative game, the 𝑢𝑢𝑖𝑖  levels mirror those observed in the market, 

and since 𝛽𝛽𝑖𝑖  depends on 𝑢𝑢𝑖𝑖, we also ensure that equilibrium prices match those observed 

in the market.29 This calibration involves finding the set of coefficients (𝜔𝜔1,𝜔𝜔2,𝜔𝜔3,𝜔𝜔4) that 

satisfies the system of first-order conditions with respect to 𝑢𝑢𝑖𝑖, evaluated at market levels, 

for given values of 𝜅𝜅𝑖𝑖. 

  Finally, revisiting our earlier discussion on the value of parameter 𝜅𝜅𝑖𝑖, higher values of 𝜅𝜅𝑖𝑖  

enhance the likelihood of the profit function satisfying the second-order conditions. And, 

economically, there is also substantial justification for a progressively increasing growth 

rate of the investment cost function. This increase is feasible within our framework when 𝜅𝜅𝑖𝑖  

exceeds 1. Trying to calibrate the exact value of 𝜅𝜅𝑖𝑖  poses certain challenges. Ideally, one 

might consider utilising firm-level profit data for this calibration. Yet, this approach is not 

straightforward. Typically, available profit figures encompass a diverse array of markets, 

activities, and even asset sales, rendering them less reliable for precise calibration. An 

alternative strategy involves assessing the economic rationale behind setting 𝜅𝜅𝑖𝑖  equal to 1 

provided second-order conditions are satisfied at that level. If second-order conditions fail 

at or there are economic reasons against 𝜅𝜅𝑖𝑖 = 1, then the model favors a value of 𝜅𝜅𝑖𝑖  greater 

than 1. In such a case, the aim is to identify a 𝜅𝜅𝑖𝑖  value ensuring that the firm’s optimisation 

problem fulfils the second-order conditions across all considered or feasible parameter 

ranges. This calibration process might also involve a sensitivity analysis for a limited 

number of 𝜅𝜅𝑖𝑖  values exceeding 1, which can be economically justified. 

7 Conclusions 

Investments in network capacity affect service quality and alter competition at the retail 

level. Traditional models, which predominantly concentrate on cost-reducing or quality-

enhancing investments, fall short in addressing industries where traffic flow and network 

capacity are of key relevance for consumers and competition. By incorporating a capacity-

 
28 Hence, like the previous strategy that assumes predetermined values for the elasticities, the levels 
of 𝑢𝑢𝑖𝑖 used for model calibration do not influence the relative variations in 𝑝𝑝𝑖𝑖 and 𝑢𝑢𝑖𝑖 resulting from the 
merger; what matters is the calibrated 𝐸𝐸𝛽𝛽𝑖𝑖. This finding is further validated by numerical simulations. 
29This is especially useful as the coefficient 𝜔𝜔𝑖𝑖  enables the conversion of annual investment 
quantities to monthly figures, or translates a multi-year investment into an optimal monthly figure. 
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sharing model into a representative consumer framework, we have formulated inverse 

demand functions that are linear in quantities. An increase in capacity investment results 

in a rotation of the inverse demand function, contrasting with the typical demand shift 

observed in standard demand-enhancing models. We argue that, as a result of this inverse 

demand rotation, the capacity-sharing model offers an accurate depiction of industries 

facing capacity constraints and congestion. 

  Our analysis finds significant differences in how firms adjust their pricing strategy in 

response to changes in their investment. Unlike the quality-enhancing investments model, 

where firms typically raise prices following investment increases, the capacity-sharing 

model reveals an incentive for firms to lower prices to leverage profitability from new 

demand, which incurs lesser congestion costs. Additionally, the capacity model 

demonstrates a consistent maximum investment intensity across varying degrees of 

product substitutability, provided utility is highly sensitive to investments. In contrast, the 

quality model shows variable investment intensity based on the degree of product 

substitutability, with potential investment reaching up to 100% of revenues for highly 

substitutable products, where intense competition in investment becomes attractive due 

to the lack of capacity constraints. The quality model exhibits a U-shaped investment 

response to the degree of product substitutability, contrasting with the capacity model’s 

monotonic decrease. 

  Efficiency gains in investment lead to significant increases in investment and higher prices 

in the quality model. In contrast, the capacity model shows moderate increases in 

investment and decreasing prices. 

  Our analysis underscores significant divergences in the impact of mergers across the 

quality and capacity-sharing models. For instance, in a setting with three firms and high 

investment intensity, the quality model shows large increases in prices and investments for 

outsider firms by over 41%, whereas insider firms see a 31% reduction in investment. In 

contrast, the capacity-sharing model presents more tempered responses, with modest 

increases for outsider firms (2.5% in prices and 2.8% in investment) and decreases in 

insider firms’ investment (8.7%). Despite these differences, the impact on consumer 

surplus from the merger is similar across both models, albeit slightly lower in the capacity 

model, particularly when products are moderately to highly differentiated. 

  When considering efficiencies from synergies which reduce investment costs, we observe 

more pronounced effects in the quality model, where both prices and investments 



33 
 

significantly increase. In low investment intensity scenarios consumer welfare may still go 

down if the detrimental impact of price increases is larger than the gains from increasing 

quality or capacity. However, in high investment intensity scenarios, total surplus increases 

in both models, and consumer surplus increases in the quality model. The capacity model 

reveals an improvement in consumer surplus for moderately to highly differentiated 

products. Moreover, efficiencies resulting from the merger tend to be most beneficial to 

consumers where investments are intensive.  

  Our approach also provides a step-by-step guide for calibrating the capacity-sharing 

model using real-world observable data. This calibration process enables the quantification 

of the impacts of mergers on prices, demand quantities, consumer surplus, and overall 

welfare. Our expectation is that the proposed model and calibration methods will prove to 

be valuable tools for practitioners and competition authorities, especially in assessing 

merger proposals in industries where considerations of congestion and capacity play a 

crucial role. 

Appendix 

Merger First-Order Conditions. The first-order conditions for the merger are: 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘/ 𝜕𝜕𝑝𝑝𝑖𝑖 =

0, 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘/ 𝜕𝜕𝑝𝑝𝑘𝑘 = 0, 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘/𝜕𝜕𝑢𝑢𝑖𝑖 = 0, 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘/𝜕𝜕𝑢𝑢𝑘𝑘 = 0, that is, 

 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘
𝜕𝜕𝑝𝑝𝑖𝑖

= 𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖� + �𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖�
𝜕𝜕𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖�

𝜕𝜕𝑝𝑝𝑖𝑖

+ (𝑝𝑝𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑐𝑐𝑘𝑘)
𝜕𝜕𝐷𝐷𝑘𝑘(𝑝𝑝𝑘𝑘 ,𝑝𝑝−𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑢𝑢−𝑘𝑘)

𝜕𝜕𝑝𝑝𝑖𝑖
= 0, 

(40) 

 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘
𝜕𝜕𝑝𝑝𝑘𝑘

= �𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖�
𝜕𝜕𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖�

𝜕𝜕𝑝𝑝𝑘𝑘
+ 𝐷𝐷𝑘𝑘(𝑝𝑝𝑘𝑘 ,𝑝𝑝−𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑢𝑢−𝑘𝑘)

+ (𝑝𝑝𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑐𝑐𝑘𝑘)
𝜕𝜕𝐷𝐷𝑘𝑘(𝑝𝑝𝑘𝑘 ,𝑝𝑝−𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑢𝑢−𝑘𝑘)

𝜕𝜕𝑝𝑝𝑘𝑘
= 0, 

(41) 

 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘
𝜕𝜕𝑢𝑢𝑖𝑖

= �𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖�
𝜕𝜕𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖�

𝜕𝜕𝑢𝑢𝑖𝑖
+ (𝑝𝑝𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑐𝑐𝑘𝑘)

𝜕𝜕𝐷𝐷𝑘𝑘(𝑝𝑝𝑘𝑘 , 𝑝𝑝−𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑢𝑢−𝑘𝑘)
𝜕𝜕𝑢𝑢𝑖𝑖

− (1 − 𝑑𝑑)Γ𝑖𝑖′�𝑢𝑢𝑖𝑖� = 0, 

(42) 

 𝜕𝜕𝜙𝜙𝑖𝑖𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

= �𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖�
𝜕𝜕𝐷𝐷𝑖𝑖�𝑝𝑝𝑖𝑖 ,𝑝𝑝−𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖�

𝜕𝜕𝑢𝑢𝑘𝑘
+ (𝑝𝑝𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑐𝑐𝑘𝑘)

𝜕𝜕𝐷𝐷𝑘𝑘(𝑝𝑝𝑘𝑘 , 𝑝𝑝−𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑢𝑢−𝑘𝑘)
𝜕𝜕𝑢𝑢𝑘𝑘

− (1 − 𝑑𝑑)Γ𝑘𝑘′(𝑢𝑢𝑘𝑘) = 0. 

(43) 

For the rest of firms 𝑖𝑖 ≠ 𝑗𝑗, 𝑘𝑘 = 1, … ,𝑛𝑛, the first-order conditions are given by the system of 

equations (28) and (29). 
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Welfare Analysis of the Merger. Given that utility is linear in income, the model allows for 

a welfare analysis. The consumer surplus (𝐶𝐶𝛥𝛥) is defined as: 

 
𝐶𝐶𝛥𝛥 = 𝑈𝑈� −�𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, (44) 

while total surplus (𝑇𝑇𝛥𝛥) is: 

 
𝑇𝑇𝛥𝛥 = 𝑈𝑈� −�𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−�Γ𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑢𝑢𝑖𝑖). (45) 

  Consider the merger scenario between firm 𝑗𝑗 and firm 𝑘𝑘. Let (𝑝𝑝𝑖𝑖𝑛𝑛𝑛𝑛,𝑢𝑢𝑖𝑖𝑛𝑛𝑛𝑛) and (𝑝𝑝𝑖𝑖𝑛𝑛,𝑢𝑢𝑖𝑖𝑛𝑛) 

represent the price and investment level in the no merger and merger equilibria, 

respectively, for firm 𝑖𝑖 (where 𝑖𝑖 = 1, … ,𝑛𝑛). Additionally, let 𝑞𝑞𝑖𝑖𝑛𝑛𝑛𝑛 and 𝑞𝑞𝑖𝑖𝑛𝑛, and 𝑈𝑈�𝑛𝑛𝑛𝑛 and 𝑈𝑈�𝑛𝑛, 

denote the demand and utility levels evaluated at the corresponding equilibria. The change 

in consumer surplus is then calculated as: 

 
Δ𝐶𝐶𝛥𝛥 ≡ 𝐶𝐶𝛥𝛥𝑛𝑛 − 𝐶𝐶𝛥𝛥𝑛𝑛𝑛𝑛 = 𝑈𝑈�𝑛𝑛 −�𝑝𝑝𝑖𝑖𝑛𝑛𝑞𝑞𝑖𝑖𝑛𝑛

𝑛𝑛

𝑖𝑖=1

− 𝑈𝑈�𝑛𝑛𝑛𝑛 + �𝑝𝑝𝑖𝑖𝑛𝑛𝑛𝑛𝑞𝑞𝑖𝑖𝑛𝑛𝑛𝑛
𝑛𝑛

𝑖𝑖=1

, (46) 

where 𝛽𝛽𝑖𝑖 ≡ �̅�𝛽𝑖𝑖 + 1/(𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖) for all 𝑖𝑖 in the no merger scenario and for all 𝑖𝑖 ≠ 𝑗𝑗, 𝑘𝑘 in the merger 

scenario; in the presence of network allocation efficiencies, and in the merger scenario,  

𝛽𝛽𝑖𝑖 = �̅�𝛽𝑖𝑖 + 1/�𝜎𝜎𝜏𝜏𝑖𝑖𝑢𝑢𝑖𝑖𝑛𝑛�  and 𝛽𝛽𝑘𝑘 = �̅�𝛽𝑘𝑘 + 1/(𝜎𝜎𝜏𝜏𝑘𝑘𝑢𝑢𝑘𝑘𝑛𝑛) for 𝑗𝑗, 𝑘𝑘 ≠ 𝑖𝑖. The change in total surplus is 

given by: 

 ∆𝑇𝑇𝛥𝛥 ≡ 𝑇𝑇𝛥𝛥𝑛𝑛 − 𝑇𝑇𝛥𝛥𝑛𝑛𝑛𝑛

= 𝑈𝑈�𝑛𝑛 − �𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖𝑛𝑛 + 𝑥𝑥𝑘𝑘𝑐𝑐𝑘𝑘𝑞𝑞𝑘𝑘𝑛𝑛� − � 𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖𝑛𝑛
𝑛𝑛

𝑖𝑖≠𝑖𝑖,𝑘𝑘

− �Γ𝑖𝑖�𝑢𝑢𝑖𝑖𝑛𝑛� + Γ𝑘𝑘(𝑢𝑢𝑘𝑘𝑛𝑛)� (1 − 𝑑𝑑) − � Γ𝑖𝑖(𝑢𝑢𝑖𝑖𝑛𝑛)
𝑛𝑛

𝑖𝑖≠𝑖𝑖,𝑘𝑘

− 𝑈𝑈�𝑛𝑛𝑛𝑛

+ �𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖𝑛𝑛𝑛𝑛
𝑛𝑛

𝑖𝑖=1

+ �Γ𝑖𝑖(𝑢𝑢𝑖𝑖𝑛𝑛𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

, 

(47) 

with 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘 ≤ 1, 0 ≤ 𝑑𝑑 < 1, and 𝜎𝜎 ≥ 1. 

Tables. Notation. ‘r’ represents the pre-merger industry investment intensity. The letters ‘c’ and ‘m’ 
denote the competitive and merger scenarios, respectively, while ‘I’ refers to the firms inside the 
merger, and ‘O’ refers to the outside firms. ‘pc’ is the pre-merger equilibrium price, ‘pI’ is the post-
merger equilibrium price for the merging firms, and ‘pO’ is the post-merger equilibrium price for the 
non-merging firms. This notation is similarly applied to ‘uc’, ‘uI’, ‘uO’ for investment levels, and ‘qc’, 
‘qI’ and ‘qo’ for quantities. ‘𝜋𝜋𝑐𝑐’ indicates the pre-merger equilibrium profit, ‘𝜙𝜙’ represents the sum of 
equilibrium profits for the two merging firms, and ‘𝜋𝜋𝑂𝑂’ is the post-merger equilibrium profit for the 
non-merging firms. 
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 𝜏𝜏 = 0.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.15 0.16 0.19 0.23 
𝑝𝑝𝑐𝑐 4.48 3.90 3.32 2.76 2.20 
𝑝𝑝𝛥𝛥 4.88 4.43 3.94 3.41 2.83 
𝑝𝑝𝛥𝛥 4.58 4.08 3.59 3.10 2.60 
𝑢𝑢𝑐𝑐 2.40 2.26 2.15 2.07 2.00 
𝑢𝑢𝛥𝛥 2.18 1.98 1.82 1.71 1.61 
𝑢𝑢𝛥𝛥 2.45 2.37 2.33 2.33 2.36 
𝑞𝑞𝑐𝑐 4.80 4.52 4.31 4.14 4.00 
𝑞𝑞𝛥𝛥 4.36 3.95 3.65 3.41 3.21 
𝑞𝑞𝛥𝛥 4.91 4.73 4.65 4.65 4.73 
𝜋𝜋𝑐𝑐 18.62 15.06 12.00 9.27 6.80 
𝜙𝜙 37.78 31.11 25.44 20.36 15.58 
𝜋𝜋𝛥𝛥 19.45 16.50 14.00 11.72 9.50 
Δ𝐶𝐶𝛥𝛥 -5.02 -6.32 -7.04 -7.24 -6.89 
Δ𝛥𝛥 -3.67 -3.88 -3.58 -2.98 -2.21 

 

 𝜏𝜏 = 0.8 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.37 0.41 0.48 0.58 
𝑝𝑝𝑐𝑐 5.51 4.73 3.99 3.29 2.61 
𝑝𝑝𝛥𝛥 5.85 5.18 4.48 3.74 2.86 
𝑝𝑝𝛥𝛥 5.71 5.10 4.55 4.07 3.69 
𝑢𝑢𝑐𝑐 4.72 4.39 4.14 3.95 3.79 
𝑢𝑢𝛥𝛥 4.18 3.70 3.32 2.99 2.60 
𝑢𝑢𝛥𝛥 4.89 4.73 4.72 4.88 5.36 
𝑞𝑞𝑐𝑐 5.91 5.49 5.18 4.93 4.74 
𝑞𝑞𝛥𝛥 5.22 4.62 4.15 3.74 3.25 
𝑞𝑞𝛥𝛥 6.12 5.92 5.90 6.10 6.71 
𝜋𝜋𝑐𝑐 21.39 16.32 12.10 8.44 5.17 
𝜙𝜙 43.67 34.16 26.20 18.99 11.82 
𝜋𝜋𝛥𝛥 22.94 18.96 15.73 12.90 10.34 
∆𝐶𝐶𝛥𝛥 -9.00 -10.67 -11.22 -10.69 -8.62 
∆𝛥𝛥 -6.56 -6.51 -5.60 -4.12 -1.96 

 

Table 9. Quality-enhancing investments model with 3 firms and no efficiencies. 
 

 𝜏𝜏 = 1.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.14 0.16 0.17 0.19 
𝑝𝑝𝑐𝑐 4.26 3.90 3.54 3.19 2.84 
𝑝𝑝𝛥𝛥 4.58 4.33 4.07 3.78 3.48 
𝑝𝑝𝛥𝛥 4.31 3.99 3.69 3.38 3.08 
𝑢𝑢𝑐𝑐 1.93 1.86 1.81 1.76 1.72 
𝑢𝑢𝛥𝛥 1.83 1.73 1.65 1.58 1.52 
𝑢𝑢𝛥𝛥 1.95 1.90 1.87 1.85 1.84 
𝑞𝑞𝑐𝑐 3.29 3.12 2.98 2.86 2.77 
𝑞𝑞𝛥𝛥 3.04 2.79 2.44 2.22 2.02 
𝑞𝑞𝛥𝛥 3.34 3.21 2.79 2.59 2.44 
𝜋𝜋𝑐𝑐 12.14 10.41 8.91 7.58 6.37 
𝜙𝜙 24.48 21.20 18.40 15.93 13.69 
𝜋𝜋𝛥𝛥 12.46 11.00 9.77 8.69 7.70 
Δ𝐶𝐶𝛥𝛥 -2.36 -3.10 -3.63 -3.98 -4.17 
Δ𝛥𝛥 -1.84 -2.13 -2.19 -2.09 -1.88 

 

 𝜏𝜏 = 0.22 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.35 0.35 0.36 0.37 
𝑝𝑝𝑐𝑐 4.67 4.52 4.37 4.23 4.09 
𝑝𝑝𝛥𝛥 4.83 4.74 4.65 4.55 4.46 
𝑝𝑝𝛥𝛥 4.69 4.55 4.43 4.30 4.19 
𝑢𝑢𝑐𝑐 2.21 2.15 2.09 2.04 1.99 
𝑢𝑢𝛥𝛥 2.13 2.04 1.95 1.88 1.82 
𝑢𝑢𝛥𝛥 2.22 2.16 2.12 2.08 2.05 
𝑞𝑞𝑐𝑐 1.54 1.47 1.42 1.37 1.32 
𝑞𝑞𝛥𝛥 1.46 1.36 1.31 1.24 1.18 
𝑞𝑞𝛥𝛥 1.55 1.49 1.40 1.34 1.28 
𝜋𝜋𝑐𝑐 4.76 4.36 4.01 3.69 3.41 
𝜙𝜙 9.54 8.77 8.09 7.49 6.95 
𝜋𝜋𝛥𝛥 4.81 4.46 4.16 3.90 3.67 
∆𝐶𝐶𝛥𝛥 -0.65 -0.87 -1.06 -1.21 -1.34 
∆𝛥𝛥 -0.57 -0.73 -0.83 -0.90 -0.94 

 

Table 10. Capacity-sharing model with 3 firms and no efficiencies. 
 

 𝜏𝜏 = 0.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.14 0.15 0.17 0.20 0.25 

%𝛥𝛥𝑝𝑝𝛥𝛥 7.46 10.53 13.20 15.41 16.92 
%𝛥𝛥𝑝𝑝𝛥𝛥 1.69 3.25 5.08 7.17 9.66 
%𝛥𝛥𝑢𝑢𝛥𝛥 -7.89 -10.19 -11.95 -13.44 -14.97 
%𝛥𝛥𝑢𝑢𝛥𝛥 1.69 3.25 5.08 7.17 9.66 
%𝛥𝛥𝜋𝜋𝛥𝛥 1.22 2.56 4.23 6.14 8.24 
%𝛥𝛥𝜋𝜋𝛥𝛥 3.42 6.61 10.41 14.85 20.26 
%𝛥𝛥𝐶𝐶𝛥𝛥 -5.99 -6.66 -6.56 -5.96 -5.02 
%𝛥𝛥𝛥𝛥 -1.86 -1.86 -1.62 -1.26 -0.87 

 

 𝜏𝜏 = 0.8 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.35 0.38 0.44 0.51 0.63 

%𝛥𝛥𝑝𝑝𝛥𝛥 4.96 6.70 7.43 6.10 -1.11 
%𝛥𝛥𝑝𝑝𝛥𝛥 2.72 5.35 8.81 13.76 22.94 
%𝛥𝛥𝑢𝑢𝛥𝛥 -10.04 -13.31 -16.44 -20.43 -28.08 
%𝛥𝛥𝑢𝑢𝛥𝛥 2.72 5.35 8.81 13.76 22.94 
%𝛥𝛥𝜋𝜋𝛥𝛥 1.68 3.36 5.21 6.57 3.94 
%𝛥𝛥𝜋𝜋𝛥𝛥 5.52 10.99 18.39 29.40 51.14 
%𝛥𝛥𝐶𝐶𝛥𝛥 -6.98 -7.47 -7.05 -5.98 -4.15 
%𝛥𝛥𝛥𝛥 -2.47 -2.35 -1.90 -1.28 -0.38 

 

Table 11 Quality-enhancing investments model with 4 firms and no efficiencies. 
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 𝜏𝜏 = 1.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.14 0.15 0.17 0.19 0.21 

%𝛥𝛥𝑝𝑝𝛥𝛥 6.49 9.14 11.50 13.59 15.42 
%𝛥𝛥𝑝𝑝𝛥𝛥 0.93 1.80 2.77 3.81 4.88 
%𝛥𝛥𝑢𝑢𝛥𝛥 -4.50 -5.99 -7.19 -8.20 -9.10 
%𝛥𝛥𝑢𝑢𝛥𝛥 0.74 1.43 2.25 3.16 4.17 
%𝛥𝛥𝜋𝜋𝛥𝛥 0.71 1.48 2.44 3.53 4.70 
%𝛥𝛥𝜋𝜋𝛥𝛥 2.15 4.19 6.61 9.32 12.31 
%𝛥𝛥𝐶𝐶𝛥𝛥 -5.09 -6.12 -6.59 -6.65 -6.43 
%𝛥𝛥𝛥𝛥 -1.63 -1.82 -1.80 -1.67 -1.46 

 

 𝜏𝜏 = 0.22 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.35 0.36 0.37 0.38 

%𝛥𝛥𝑝𝑝𝛥𝛥 3.01 4.27 5.40 6.42 7.34 
%𝛥𝛥𝑝𝑝𝛥𝛥 0.31 0.61 0.96 1.35 1.76 
%𝛥𝛥𝑢𝑢𝛥𝛥 -3.33 -4.61 -5.74 -6.74 -7.65 
%𝛥𝛥𝑢𝑢𝛥𝛥 0.36 0.72 1.14 1.62 2.15 
%𝛥𝛥𝜋𝜋𝛥𝛥 0.24 0.48 0.76 1.08 1.41 
%𝛥𝛥𝜋𝜋𝛥𝛥 0.92 1.83 2.92 4.16 5.50 
%𝛥𝛥𝐶𝐶𝛥𝛥 -3.52 -4.64 -5.47 -6.10 -6.56 
%𝛥𝛥𝛥𝛥 -1.38 -1.76 -2.00 -2.15 -2.24 

 

Table 12. Capacity-sharing model with 4 firms and no efficiencies. 
 

 𝜏𝜏 = 0.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.15 0.16 0.19 0.23 
𝑝𝑝𝑐𝑐 4.48 3.90 3.32 2.76 2.20 
𝑝𝑝𝛥𝛥 5.09 4.62 4.11 3.57 2.97 
𝑝𝑝𝛥𝛥 4.54 4.02 3.53 3.03 2.51 
𝑢𝑢𝑐𝑐 2.40 2.26 2.15 2.07 2.00 
𝑢𝑢𝛥𝛥 3.03 2.75 2.54 2.38 2.25 
𝑢𝑢𝛥𝛥 2.43 2.34 2.29 2.27 2.29 
𝑞𝑞𝑐𝑐 4.80 4.52 4.31 4.14 4.00 
𝑞𝑞𝛥𝛥 4.54 4.12 3.81 3.57 3.38 
𝑞𝑞𝛥𝛥 4.86 4.67 4.57 4.54 4.57 
𝜋𝜋𝑐𝑐 18.62 15.06 12.00 9.27 6.80 
𝜙𝜙 39.37 32.38 26.47 21.21 16.30 
𝜋𝜋𝛥𝛥 19.10 16.07 13.51 11.17 8.88 
Δ𝐶𝐶𝛥𝛥 -2.96 -4.54 -5.45 -5.77 -5.52 
Δ𝛥𝛥 -0.36 -1.27 -1.46 -1.21 -0.73 

 

 𝜏𝜏 = 0.8 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.37 0.41 0.48 0.58 

𝑝𝑝𝑐𝑐 5.51 4.73 3.99 3.29 2.61 

𝑝𝑝𝛥𝛥 7.43 6.56 5.76 4.99 4.26 

𝑝𝑝𝛥𝛥 5.30 4.57 3.91 3.25 2.54 

𝑢𝑢𝑐𝑐 4.72 4.39 4.14 3.95 3.79 

𝑢𝑢𝛥𝛥 8.17 7.21 6.56 6.14 5.95 

𝑢𝑢𝛥𝛥 4.54 4.25 4.05 3.91 3.69 

𝑞𝑞𝑐𝑐 5.91 5.49 5.18 4.93 4.74 

𝑞𝑞𝛥𝛥 6.64 5.86 5.33 4.99 4.84 

𝑞𝑞𝛥𝛥 5.68 5.31 5.07 4.88 4.61 

𝜋𝜋𝑐𝑐 21.39 16.32 12.10 8.44 5.17 

𝜙𝜙 55.32 43.07 33.41 25.27 18.15 

𝜋𝜋𝛥𝛥 19.78 15.27 11.60 8.26 4.89 

∆𝐶𝐶𝛥𝛥 10.84 5.02 1.88 0.55 0.71 

∆𝛥𝛥 21.77 14.39 10.58 8.76 8.24 
 

Table 13. Quality-enhancing investments model with 3 firms and efficiencies (𝑑𝑑 = 0.25). 
 

 𝜏𝜏 = 1.5 

𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.13 0.14 0.16 0.17 0.19 
𝑝𝑝𝑐𝑐 4.26 3.90 3.54 3.19 2.84 
𝑝𝑝𝛥𝛥 4.57 4.33 4.07 3.78 3.47 
𝑝𝑝𝛥𝛥 4.29 3.97 3.65 3.34 3.03 
𝑢𝑢𝑐𝑐 1.93 1.86 1.81 1.76 1.72 
𝑢𝑢𝛥𝛥 2.05 1.94 1.85 1.77 1.71 
𝑢𝑢𝛥𝛥 1.95 1.89 1.86 1.84 1.83 
𝑞𝑞𝑐𝑐 3.29 3.12 2.98 2.86 2.77 
𝑞𝑞𝛥𝛥 3.12 2.87 2.51 2.27 2.07 
𝑞𝑞𝛥𝛥 3.32 3.19 2.76 2.56 2.40 
𝜋𝜋𝑐𝑐 12.14 10.41 8.91 7.58 6.37 
𝜙𝜙 25.41 22.01 19.11 16.57 14.26 
𝜋𝜋𝛥𝛥 12.36 10.86 9.60 8.50 7.49 
Δ𝐶𝐶𝛥𝛥 -1.92 -2.68 -3.21 -3.56 -3.73 
Δ𝛥𝛥 -0.59 -1.03 -1.22 -1.22 -1.10 

 

 𝜏𝜏 = 0.22 
𝜌𝜌 0.2 0.3 0.4 0.5 0.6 
𝑟𝑟 0.34 0.35 0.35 0.36 0.37 
𝑝𝑝𝑐𝑐 4.67 4.52 4.37 4.23 4.09 
𝑝𝑝𝛥𝛥 4.83 4.74 4.64 4.55 4.46 
𝑝𝑝𝛥𝛥 4.64 4.48 4.34 4.20 4.07 
𝑢𝑢𝑐𝑐 2.21 2.15 2.09 2.04 1.99 
𝑢𝑢𝛥𝛥 2.72 2.60 2.49 2.40 2.32 
𝑢𝑢𝛥𝛥 2.19 2.13 2.08 2.03 2.00 
𝑞𝑞𝑐𝑐 1.54 1.47 1.42 1.37 1.32 
𝑞𝑞𝛥𝛥 1.70 1.58 1.51 1.43 1.36 
𝑞𝑞𝛥𝛥 1.52 1.46 1.35 1.28 1.21 
𝜋𝜋𝑐𝑐 4.76 4.36 4.01 3.69 3.41 
𝜙𝜙 11.56 10.60 9.78 9.05 8.40 
𝜋𝜋𝛥𝛥 4.66 4.27 3.93 3.64 3.38 
∆𝐶𝐶𝛥𝛥 0.55 0.23 -0.02 -0.23 -0.40 
∆𝛥𝛥 2.49 2.02 1.66 1.38 1.16 

 

Table 14. Capacity-sharing model with 3 firms and efficiencies (𝑑𝑑 = 0.25). 
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